IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v24y2021i1d10.1007_s10729-020-09537-x.html
   My bibliography  Save this article

Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases

Author

Listed:
  • Wesley J. Marrero

    (University of Michigan)

  • Mariel S. Lavieri

    (University of Michigan)

  • Jeremy B. Sussman

    (University of Michigan)

Abstract

Atherosclerotic cardiovascular disease (ASCVD) is among the leading causes of death in the US. Although research has shown that ASCVD has genetic elements, the understanding of how genetic testing influences its prevention and treatment has been limited. To this end, we model the health trajectory of patients stochastically and determine treatment and testing decisions simultaneously. Since the cholesterol level of patients is one controllable risk factor for ASCVD events, we model cholesterol treatment plans as Markov decision processes. We determine whether and when patients should receive a genetic test using value of information analysis. By simulating the health trajectory of over 64 million adult patients, we find that 6.73 million patients undergo genetic testing. The optimal treatment plans informed with clinical and genetic information save 5,487 more quality-adjusted life-years while costing $1.18 billion less than the optimal treatment plans informed with clinical information only. As precision medicine becomes increasingly important, understanding the impact of genetic information becomes essential.

Suggested Citation

  • Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
  • Handle: RePEc:kap:hcarem:v:24:y:2021:i:1:d:10.1007_s10729-020-09537-x
    DOI: 10.1007/s10729-020-09537-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-020-09537-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-020-09537-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew J. Glover & Edmund Jones & Katya L. Masconi & Michael J. Sweeting & Simon G. Thompson, 2018. "Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening," Medical Decision Making, , vol. 38(4), pages 439-451, May.
    2. Tat Chan & Chakravarthi Narasimhan & Ying Xie, 2013. "Treatment Effectiveness and Side Effects: A Model of Physician Learning," Management Science, INFORMS, vol. 59(6), pages 1309-1325, June.
    3. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Literature Analysis: A Review of Applications in Health Risk Management," Medical Decision Making, , vol. 24(3), pages 287-298, June.
    4. Manaf Zargoush & Mehmet Gümüş & Vedat Verter & Stella S. Daskalopoulou, 2018. "Designing Risk‐Adjusted Therapy for Patients with Hypertension," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2291-2312, December.
    5. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    6. Brian T. Denton & Murat Kurt & Nilay D. Shah & Sandra C. Bryant & Steven A. Smith, 2009. "Optimizing the Start Time of Statin Therapy for Patients with Diabetes," Medical Decision Making, , vol. 29(3), pages 351-367, May.
    7. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    8. Hoel, Michael & Iversen, Tor & Nilssen, Tore & Vislie, Jon, 2006. "Genetic testing in competitive insurance markets with repulsion from chance: A welfare analysis," Journal of Health Economics, Elsevier, vol. 25(5), pages 847-860, September.
    9. Gad Abraham & Jason A Tye-Din & Oneil G Bhalala & Adam Kowalczyk & Justin Zobel & Michael Inouye, 2014. "Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning," PLOS Genetics, Public Library of Science, vol. 10(2), pages 1-15, February.
    10. Fumie Yokota & Kimberly M. Thompson, 2004. "Value of Information Analysis in Environmental Health Risk Management Decisions: Past, Present, and Future," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 635-650, June.
    11. Allen C. Miller, 1975. "The Value of Sequential Information," Management Science, INFORMS, vol. 22(1), pages 1-11, September.
    12. K. Cooper & S. Brailsford & R. Davies & J. Raftery, 2006. "A review of health care models for coronary heart disease interventions," Health Care Management Science, Springer, vol. 9(4), pages 311-324, November.
    13. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    14. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    15. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    16. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    17. Shan Liu & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2017. "Optimizing patient treatment decisions in an era of rapid technological advances: the case of hepatitis C treatment," Health Care Management Science, Springer, vol. 20(1), pages 16-32, March.
    18. Lotte Steuten & Gijs Wetering & Karin Groothuis-Oudshoorn & Valesca Retèl, 2013. "A Systematic and Critical Review of the Evolving Methods and Applications of Value of Information in Academia and Practice," PharmacoEconomics, Springer, vol. 31(1), pages 25-48, January.
    19. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    20. Sarang Deo & Kumar Rajaram & Sandeep Rath & Uday S. Karmarkar & Matthew B. Goetz, 2015. "Planning for HIV Screening, Testing, and Care at the Veterans Health Administration," Operations Research, INFORMS, vol. 63(2), pages 287-304, April.
    21. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    22. Elisa F. Long & Eike Nohdurft & Stefan Spinler, 2018. "Spatial Resource Allocation for Emerging Epidemics: A Comparison of Greedy, Myopic, and Dynamic Policies," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 181-198, May.
    23. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    24. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    25. Yan Yang & Jeremy D. Goldhaber-Fiebert & Lawrence M. Wein, 2013. "Analyzing Screening Policies for Childhood Obesity," Management Science, INFORMS, vol. 59(4), pages 782-795, April.
    26. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    27. Amy O’Sullivan & Jaime Rubin & Joshua Nyambose & Andreas Kuznik & David Cohen & David Thompson, 2011. "Cost Estimation of Cardiovascular Disease Events in the US," PharmacoEconomics, Springer, vol. 29(8), pages 693-704, August.
    28. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    29. Nowok, Beata & Raab, Gillian M. & Dibben, Chris, 2016. "synthpop: Bespoke Creation of Synthetic Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i11).
    30. Elisa F. Long & Naveen K. Vaidya & Margaret L. Brandeau, 2008. "Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics," Operations Research, INFORMS, vol. 56(6), pages 1366-1381, December.
    31. Muge Capan & Anahita Khojandi & Brian T. Denton & Kimberly D. Williams & Turgay Ayer & Jagpreet Chhatwal & Murat Kurt & Jennifer Mason Lobo & Mark S. Roberts & Greg Zaric & Shengfan Zhang & J. Sanford, 2017. "From Data to Improved Decisions: Operations Research in Healthcare Delivery," Medical Decision Making, , vol. 37(8), pages 849-859, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel F. Otero-Leon & Mariel S. Lavieri & Brian T. Denton & Jeremy Sussman & Rodney A. Hayward, 2023. "Monitoring policy in the context of preventive treatment of cardiovascular disease," Health Care Management Science, Springer, vol. 26(1), pages 93-116, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    2. Daniel F. Otero-Leon & Mariel S. Lavieri & Brian T. Denton & Jeremy Sussman & Rodney A. Hayward, 2023. "Monitoring policy in the context of preventive treatment of cardiovascular disease," Health Care Management Science, Springer, vol. 26(1), pages 93-116, March.
    3. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    4. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    5. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    6. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    7. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    8. Nicky Welton & A. E. Ades, 2012. "Research Decisions In The Face Of Heterogeneity: What Can A New Study Tell Us?," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1196-1200, October.
    9. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    10. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    11. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    12. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    13. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    14. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    15. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    16. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    17. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    18. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    19. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    20. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:24:y:2021:i:1:d:10.1007_s10729-020-09537-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.