IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i1d10.1007_s10729-022-09621-4.html
   My bibliography  Save this article

Monitoring policy in the context of preventive treatment of cardiovascular disease

Author

Listed:
  • Daniel F. Otero-Leon

    (University of Michigan)

  • Mariel S. Lavieri

    (University of Michigan)

  • Brian T. Denton

    (University of Michigan)

  • Jeremy Sussman

    (University of Michigan)

  • Rodney A. Hayward

    (University of Michigan)

Abstract

Preventing chronic diseases is an essential aspect of medical care. To prevent chronic diseases, physicians focus on monitoring their risk factors and prescribing the necessary medication. The optimal monitoring policy depends on the patient’s risk factors and demographics. Monitoring too frequently may be unnecessary and costly; on the other hand, monitoring the patient infrequently means the patient may forgo needed treatment and experience adverse events related to the disease. We propose a finite horizon and finite-state Markov decision process to define monitoring policies. To build our Markov decision process, we estimate stochastic models based on longitudinal observational data from electronic health records for a large cohort of patients seen in the national U.S. Veterans Affairs health system. We use our model to study policies for whether or when to assess the need for cholesterol-lowering medications. We further use our model to investigate the role of gender and race on optimal monitoring policies.

Suggested Citation

  • Daniel F. Otero-Leon & Mariel S. Lavieri & Brian T. Denton & Jeremy Sussman & Rodney A. Hayward, 2023. "Monitoring policy in the context of preventive treatment of cardiovascular disease," Health Care Management Science, Springer, vol. 26(1), pages 93-116, March.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:1:d:10.1007_s10729-022-09621-4
    DOI: 10.1007/s10729-022-09621-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09621-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09621-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anirban Basu & David Meltzer, 2018. "Decision Criterion and Value of Information Analysis: Optimal Aspirin Dosage for Secondary Prevention of Cardiovascular Events," Medical Decision Making, , vol. 38(4), pages 427-438, May.
    2. Rogier L. Nijhuis & Theo Stijnen & Anna Peeters & Jacqueline C.M. Witteman & Albert Hofman & M. G. Myriam Hunink, 2006. "Apparent and Internal Validity of a Monte Carlo–Markov Model for Cardiovascular Disease in a Cohort Follow-up Study," Medical Decision Making, , vol. 26(2), pages 134-144, March.
    3. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    4. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    5. J. Besag & D. Mondal, 2013. "Exact Goodness-of-Fit Tests for Markov Chains," Biometrics, The International Biometric Society, vol. 69(2), pages 488-496, June.
    6. Amy O’Sullivan & Jaime Rubin & Joshua Nyambose & Andreas Kuznik & David Cohen & David Thompson, 2011. "Cost Estimation of Cardiovascular Disease Events in the US," PharmacoEconomics, Springer, vol. 29(8), pages 693-704, August.
    7. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    8. Greggory J. Schell & Gian-Gabriel P. Garcia & Mariel S. Lavieri & Jeremy B. Sussman & Rodney A. Hayward, 2019. "Optimal coinsurance rates for a heterogeneous population under inequality and resource constraints," IISE Transactions, Taylor & Francis Journals, vol. 51(1), pages 74-91, January.
    9. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    10. Paret, Kyle E. & Mayorga, Maria E. & Lodree, Emmett J., 2021. "Assigning spontaneous volunteers to relief efforts under uncertainty in task demand and volunteer availability," Omega, Elsevier, vol. 99(C).
    11. Lauren N. Steimle & Brian T. Denton, 2017. "Markov Decision Processes for Screening and Treatment of Chronic Diseases," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 189-222, Springer.
    12. Alexander Thompson & Bruce Guthrie & Katherine Payne, 2017. "Using the Payoff Time in Decision-Analytic Models: A Case Study for Using Statins in Primary Prevention," Medical Decision Making, , vol. 37(7), pages 759-769, October.
    13. Alireza Sabouri & Woonghee Tim Huh & Steven M. Shechter, 2017. "Screening Strategies for Patients on the Kidney Transplant Waiting List," Operations Research, INFORMS, vol. 65(5), pages 1131-1146, October.
    14. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    15. Lauren N. Steimle & David L. Kaufman & Brian T. Denton, 2021. "Multi-model Markov decision processes," IISE Transactions, Taylor & Francis Journals, vol. 53(10), pages 1124-1139, October.
    16. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    2. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    3. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    4. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    5. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    6. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    7. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    8. Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
    9. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    10. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    11. Yu, Haiyan & Yang, Ching-Chi & Yu, Ping, 2023. "Constrained optimization for stratified treatment rules in reducing hospital readmission rates of diabetic patients," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1355-1364.
    12. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    13. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    14. Hui Zhang & Tao Huang & Tao Yan, 2022. "A quantitative analysis of risk-sharing agreements with patient support programs for improving medication adherence," Health Care Management Science, Springer, vol. 25(2), pages 253-274, June.
    15. Topuz, Kazim & Urban, Timothy L. & Yildirim, Mehmet B., 2024. "A Markovian score model for evaluating provider performance for continuity of care—An explainable analytics approach," European Journal of Operational Research, Elsevier, vol. 317(2), pages 341-351.
    16. Federico A. Bugni & Jackson Bunting & Takuya Ura, 2020. "Testing homogeneity in dynamic discrete games in finite samples," Papers 2010.02297, arXiv.org, revised Aug 2024.
    17. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    18. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    19. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    20. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:1:d:10.1007_s10729-022-09621-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.