IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i2p583-606.html
   My bibliography  Save this article

Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data

Author

Listed:
  • Zlatana Nenova
  • Jennifer Shang

Abstract

Managing patients with chronic conditions is challenging. It requires timely care adjustments based on the patient's health status. We leverage big data to optimize patient monitoring frequencies and improve treatment. Our research is motivated by the need to improve patient care at the Veterans Affairs (VA) hospitals. We propose an integrated model to better serve patients with chronic kidney disease (CKD). CKD is prevalent, complex, and costly. The demand for kidney care has steadily increased; however, there is a decline in the availability of nephrologists. We propose a finite‐horizon Markov decision process (MDP) model, which utilizes evidence‐based and data‐driven approach to identify the best follow‐up appointment schedule for patients. The MDP model helps attain an optimal dynamic treatment plan to enhance patient's quality of life. It is parameterized by data from 11 US Department of Veterans Affairs hospitals, containing 68,513 CKD patients (mostly males between 60 and 90 years old) geographically dispersed throughout the United States between January 1, 2009 and February 21, 2016. Through various estimates and assumptions, we propose an optimal monitoring policy. We find that CKD severity, comorbidities, age, and distance to nephrologist all play roles in shaping patients’ needs of care. Through the VA clinical data, we have numerically validated our recommendation and shown that it considerably outperforms the current kidney care guidelines adopted by the VA.

Suggested Citation

  • Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:2:p:583-606
    DOI: 10.1111/poms.13568
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13568
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick W. Sullivan & Vahram Ghushchyan, 2006. "Preference-Based EQ-5D Index Scores for Chronic Conditions in the United States," Medical Decision Making, , vol. 26(4), pages 410-420, July.
    2. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    3. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    4. Brent Moritz & Enno Siemsen & Mirko Kremer, 2014. "Judgmental Forecasting: Cognitive Reflection and Decision Speed," Production and Operations Management, Production and Operations Management Society, vol. 23(7), pages 1146-1160, July.
    5. Oguzhan Alagoz & Cindy L. Bryce & Steven Shechter & Andrew Schaefer & Chung-Chou H. Chang & Derek C. Angus & Mark S. Roberts, 2005. "Incorporating Biological Natural History in Simulation Models: Empirical Estimates of the Progression of End-Stage Liver Disease," Medical Decision Making, , vol. 25(6), pages 620-632, November.
    6. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    7. Seetharaman, P B & Chintagunta, Pradeep K, 2003. "The Proportional Hazard Model for Purchase Timing: A Comparison of Alternative Specifications," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 368-382, July.
    8. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    9. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    10. Jacob Feldman & Nan Liu & Huseyin Topaloglu & Serhan Ziya, 2014. "Appointment Scheduling Under Patient Preference and No-Show Behavior," Operations Research, INFORMS, vol. 62(4), pages 794-811, August.
    11. Claude Lefévre, 1981. "Optimal Control of a Birth and Death Epidemic Process," Operations Research, INFORMS, vol. 29(5), pages 971-982, October.
    12. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    13. Robin M. Hogarth & Spyros Makridakis, 1981. "Forecasting and Planning: An Evaluation," Management Science, INFORMS, vol. 27(2), pages 115-138, February.
    14. Lauren N. Steimle & Brian T. Denton, 2017. "Markov Decision Processes for Screening and Treatment of Chronic Diseases," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 189-222, Springer.
    15. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    16. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    17. Jennifer E. Mason & Darin A. England & Brian T. Denton & Steven A. Smith & Murat Kurt & Nilay D. Shah, 2012. "Optimizing Statin Treatment Decisions for Diabetes Patients in the Presence of Uncertain Future Adherence," Medical Decision Making, , vol. 32(1), pages 154-166, January.
    18. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    19. McQuoid, Julia & Jowsey, Tanisha & Talaulikar, Girish, 2017. "Contextualising renal patient routines: Everyday space-time contexts, health service access, and wellbeing," Social Science & Medicine, Elsevier, vol. 183(C), pages 142-150.
    20. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    21. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    22. Chris P. Lee & Glenn M. Chertow & Stefanos A. Zenios, 2008. "Optimal Initiation and Management of Dialysis Therapy," Operations Research, INFORMS, vol. 56(6), pages 1428-1449, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basile, L.J. & Carbonara, N. & Panniello, U. & Pellegrino, R., 2024. "The role of big data analytics in improving the quality of healthcare services in the Italian context: The mediating role of risk management," Technovation, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    2. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    3. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    4. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    5. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    6. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    7. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    8. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    9. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    10. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    11. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    12. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    13. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    14. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    15. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    16. Zlatana Nenova & Jennifer Shang, 2022. "Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 259-280, January.
    17. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    18. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    19. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    20. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:2:p:583-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.