IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v23y2023i2d10.1007_s12351-023-00774-w.html
   My bibliography  Save this article

A multi-objective constrained partially observable Markov decision process model for breast cancer screening

Author

Listed:
  • Robert Kraig Helmeczi

    (Ryerson University)

  • Can Kavaklioglu

    (Ryerson University)

  • Mucahit Cevik

    (Ryerson University)

  • Davood Pirayesh Neghab

    (Ryerson University)

Abstract

Breast cancer is a common and deadly disease, but it is often curable when diagnosed early. While most countries have large-scale screening programs, there is no consensus on a single globally accepted guideline for breast cancer screening. The complex nature of the disease; the limited availability of screening methods such as mammography, magnetic resonance imaging (MRI), and ultrasound; and public health policies all factor into the development of screening policies. Resource availability concerns necessitate the design of policies which conform to a budget, a problem which can be modelled as a constrained partially observable Markov decision process (CPOMDP). In this study, we propose a multi-objective CPOMDP model for breast cancer screening which allows for supplemental screening methods to accompany mammography. The model has two objectives: maximize the quality-adjusted life years (QALYs) and minimize lifetime breast cancer mortality risk (LBCMR). We identify the Pareto frontier of optimal solutions for average and high-risk patients at different budget levels, which can be used by decision-makers to set policies in practice. We find that the policies obtained by using a weighted objective are able to generate well-balanced QALYs and LBCMR values. In contrast, the single-objective models generally sacrifice a substantial amount in terms of QALYs/LBCMR for a minimal gain in LBCMR/QALYs. Additionally, our results show that, with the baseline values for cost and disutility parameters, supplemental screenings are rarely recommended in CPOMDP policies, especially in a budget-constrained setting. A sensitivity analysis reveals the thresholds on cost and disutility values at which supplemental screenings become advantageous to prescribe.

Suggested Citation

  • Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
  • Handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00774-w
    DOI: 10.1007/s12351-023-00774-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-023-00774-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-023-00774-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William S. Lovejoy, 1991. "Computationally Feasible Bounds for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 39(1), pages 162-175, February.
    2. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    3. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    4. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    5. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    6. Shifali Bansal & Vijeta Deshpande & Xinmeng Zhao & Jeremy A. Lauer & Filip Meheus & André Ilbawi & Chaitra Gopalappa, 2020. "Analysis of Mammography Screening Schedules under Varying Resource Constraints for Planning Breast Cancer Control Programs in Low- and Middle-Income Countries: A Mathematical Study," Medical Decision Making, , vol. 40(3), pages 364-378, April.
    7. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    8. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    9. Mehmet Ulvi Saygi Ayvaci & Oguzhan Alagoz & Mehmet Eren Ahsen & Elizabeth S. Burnside, 2018. "Preference‐Sensitive Management of Post‐Mammography Decisions in Breast Cancer Diagnosis," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2313-2338, December.
    10. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    11. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    12. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    13. Quang A. Le, 2016. "Structural Uncertainty of Markov Models for Advanced Breast Cancer," Medical Decision Making, , vol. 36(5), pages 629-640, July.
    14. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    15. Sait Tunç & Oguzhan Alagoz & Elizabeth S. Burnside, 2022. "A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2361-2378, May.
    16. Raha Akhavan-Tabatabaei & Diana Marcela Sánchez & Thomas G. Yeung, 2017. "A Markov Decision Process Model for Cervical Cancer Screening Policies in Colombia," Medical Decision Making, , vol. 37(2), pages 196-211, February.
    17. Molani, Sevda & Madadi, Mahboubeh & Wilkes, Wesley, 2019. "A partially observable Markov chain framework to estimate overdiagnosis risk in breast cancer screening: Incorporating uncertainty in patients adherence behaviors," Omega, Elsevier, vol. 89(C), pages 40-53.
    18. Mucahit Cevik & Turgay Ayer & Oguzhan Alagoz & Brian L. Sprague, 2018. "Analysis of Mammography Screening Policies under Resource Constraints," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 949-972, May.
    19. Chaitra Gopalappa & Jiachen Guo & Prashant Meckoni & Buyannemekh Munkhbat & Carel Pretorius & Jeremy Lauer & André Ilbawi & Melanie Bertram, 2018. "A Two-Step Markov Processes Approach for Parameterization of Cancer State-Transition Models for Low- and Middle-Income Countries," Medical Decision Making, , vol. 38(4), pages 520-530, May.
    20. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    2. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    3. Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
    4. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    5. Sait Tunç & Oguzhan Alagoz & Elizabeth S. Burnside, 2022. "A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2361-2378, May.
    6. Ali Hajjar & Oguzhan Alagoz, 2023. "Personalized Disease Screening Decisions Considering a Chronic Condition," Management Science, INFORMS, vol. 69(1), pages 260-282, January.
    7. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    8. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    9. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    10. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    11. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    12. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    13. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    14. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    15. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    16. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    17. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    18. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    19. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    20. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:2:d:10.1007_s12351-023-00774-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.