IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v14y2012i4p529-547.html
   My bibliography  Save this article

Optimization of Prostate Biopsy Referral Decisions

Author

Listed:
  • Jingyu Zhang

    (Department of Clinical Decision Support Solutions, Philips Research North America, Briarcliff Manor, New York 10510)

  • Brian T. Denton

    (Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695)

  • Hari Balasubramanian

    (Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003)

  • Nilay D. Shah

    (Division of Health Care Policy and Research, Mayo Clinic, Rochester, Minnesota 55905)

  • Brant A. Inman

    (Department of Surgery, School of Medicine, Duke University, Durham, North Carolina 27710)

Abstract

Prostate cancer is the most common solid tumor in American men and is screened for using prostate-specific antigen (PSA) tests. We report on a nonstationary partially observable Markov decision process (POMDP) for prostate biopsy referral decisions. The core states are the patients' prostate cancer related health states, and PSA test results are the observations. Transition probabilities and rewards are inferred from the Mayo Clinic Radical Prostatectomy Registry and the medical literature. The objective of our model is to maximize expected quality-adjusted life years. We solve the POMDP model to obtain an age and belief (probability of having prostate cancer) dependent optimal biopsy referral policy. We also prove a number of structural properties including the existence of a control-limit type policy for the biopsy referral decision. Our empirical results demonstrate a nondecreasing belief threshold in age, and we provide sufficient conditions under which PSA screening should be discontinued for older patients. Finally, the benefits of screening under the optimal biopsy referral policy are estimated, and sensitivity analysis is used to prioritize the model parameters that would benefit from additional data collection.

Suggested Citation

  • Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
  • Handle: RePEc:inm:ormsom:v:14:y:2012:i:4:p:529-547
    DOI: 10.1287/msom.1120.0388
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.1120.0388
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.1120.0388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    2. Steven M. Shechter & Cindy L. Bryce & Oguzhan Alagoz & Jennifer E. Kreke & James E. Stahl & Andrew J. Schaefer & Derek C. Angus & Mark S. Roberts, 2005. "A Clinically Based Discrete-Event Simulation of End-Stage Liver Disease and the Organ Allocation Process," Medical Decision Making, , vol. 25(2), pages 199-209, March.
    3. Ariela Sofer & Jianchao Zeng & Seong Mun, 2003. "Optimal Biopsy Protocols for Prostate Cancer," Annals of Operations Research, Springer, vol. 119(1), pages 63-74, March.
    4. Lawrence M. Wein & Stefanos A. Zenios, 1996. "Pooled Testing for HIV Screening: Capturing the Dilution Effect," Operations Research, INFORMS, vol. 44(4), pages 543-569, August.
    5. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    6. S. Christian Albright, 1979. "Structural Results for Partially Observable Markov Decision Processes," Operations Research, INFORMS, vol. 27(5), pages 1041-1053, October.
    7. Brian T. Denton & Murat Kurt & Nilay D. Shah & Sandra C. Bryant & Steven A. Smith, 2009. "Optimizing the Start Time of Statin Therapy for Patients with Diabetes," Medical Decision Making, , vol. 29(3), pages 351-367, May.
    8. Margaret L. Brandeau & Douglas K. Owens & Carol H. Sox & Robert M. Wachter, 1993. "Screening Women of Childbearing Age for Human Immunodeficiency Virus: A Model-Based Policy Analysis," Management Science, INFORMS, vol. 39(1), pages 72-92, January.
    9. A. H. Packer, 1968. "Applying Cost-Effectiveness Concepts to the Community Health System," Operations Research, INFORMS, vol. 16(2), pages 227-253, April.
    10. Oguzhan Alagoz & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2004. "The Optimal Timing of Living-Donor Liver Transplantation," Management Science, INFORMS, vol. 50(10), pages 1420-1430, October.
    11. Hau L. Lee & William P. Pierskalla, 1988. "Mass Screening Models for Contagious Diseases with No Latent Period," Operations Research, INFORMS, vol. 36(6), pages 917-928, December.
    12. Ruth Etzioni & Roman Gulati & Seth Falcon & David F. Penson, 2008. "Impact of PSA Screening on the Incidence of Advanced Stage Prostate Cancer in the United States: A Surveillance Modeling Approach," Medical Decision Making, , vol. 28(3), pages 323-331, May.
    13. George E. Monahan, 1982. "State of the Art---A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms," Management Science, INFORMS, vol. 28(1), pages 1-16, January.
    14. William S. Lovejoy, 1987. "Some Monotonicity Results for Partially Observed Markov Decision Processes," Operations Research, INFORMS, vol. 35(5), pages 736-743, October.
    15. S. Fanshel & J. W. Bush, 1970. "A Health-Status Index and its Application to Health-Services Outcomes," Operations Research, INFORMS, vol. 18(6), pages 1021-1066, December.
    16. White, Chelsea C., 1980. "Monotone control laws for noisy, countable-state Markov chains," European Journal of Operational Research, Elsevier, vol. 5(2), pages 124-132, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    2. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    3. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    4. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    5. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    6. Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
    7. Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
    8. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    9. Lauren E. Cipriano & Thomas A. Weber, 2018. "Population-level intervention and information collection in dynamic healthcare policy," Health Care Management Science, Springer, vol. 21(4), pages 604-631, December.
    10. Li, Y. & Zhu, M. & Klein, R. & Kong, N., 2014. "Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study," European Journal of Operational Research, Elsevier, vol. 238(1), pages 313-326.
    11. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    12. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    13. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    14. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    15. Anthony Bonifonte & Turgay Ayer & Benjamin Haaland, 2022. "An Analytics Approach to Guide Randomized Controlled Trials in Hypertension Management," Management Science, INFORMS, vol. 68(9), pages 6634-6647, September.
    16. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    17. Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
    18. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    19. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    2. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    3. Kotas, Jakob & Ghate, Archis, 2018. "Bayesian learning of dose–response parameters from a cohort under response-guided dosing," European Journal of Operational Research, Elsevier, vol. 265(1), pages 328-343.
    4. Chiel van Oosterom & Lisa M. Maillart & Jeffrey P. Kharoufeh, 2017. "Optimal maintenance policies for a safety‐critical system and its deteriorating sensor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 399-417, August.
    5. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    6. Hao Zhang, 2010. "Partially Observable Markov Decision Processes: A Geometric Technique and Analysis," Operations Research, INFORMS, vol. 58(1), pages 214-228, February.
    7. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    8. Lu Jin & Undarmaa Bayarsaikhan & Kazuyuki Suzuki, 2016. "Optimal control limit policy for age-dependent deteriorating systems under incomplete observations," Journal of Risk and Reliability, , vol. 230(1), pages 34-43, February.
    9. Daniel Underwood & Jingyu Zhang & Brian Denton & Nilay Shah & Brant Inman, 2012. "Simulation optimization of PSA-threshold based prostate cancer screening policies," Health Care Management Science, Springer, vol. 15(4), pages 293-309, December.
    10. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.
    11. Miehling, Erik & Teneketzis, Demosthenis, 2020. "Monotonicity properties for two-action partially observable Markov decision processes on partially ordered spaces," European Journal of Operational Research, Elsevier, vol. 282(3), pages 936-944.
    12. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    13. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    14. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    15. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    16. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    17. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    18. Baruch Keren & Joseph Pliskin, 2011. "Optimal timing of joint replacement using mathematical programming and stochastic programming models," Health Care Management Science, Springer, vol. 14(4), pages 361-369, November.
    19. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    20. Grosfeld-Nir, Abraham, 2007. "Control limits for two-state partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 182(1), pages 300-304, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:14:y:2012:i:4:p:529-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.