IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i2p595-610.html
   My bibliography  Save this article

Probabilistic sensitivity measures as information value

Author

Listed:
  • Borgonovo, Emanuele
  • Hazen, Gordon B.
  • Jose, Victor Richmond R.
  • Plischke, Elmar

Abstract

Decision makers increasingly rely on forecasts or predictions generated by quantitative models. Best practices recommend that a forecast report be accompanied by a sensitivity analysis. A wide variety of probabilistic sensitivity measures have been suggested; however, model inputs may be ranked differently by different sensitivity measures. Is there some way to reduce this disparity by identifying what probabilistic sensitivity measures are most appropriate for a given reporting context? We address this question by postulating that importance rankings of model inputs generated by a sensitivity measure should correspond to the information value for those inputs in the problem of constructing an optimal report based on some proper scoring rule. While some sensitivity measures have already been identified as information value under proper scoring rules, we identify others and provide some generalizations. We address the general question of when a sensitivity measure has this property, presenting necessary and sufficient conditions. We directly examine whether sensitivity measures retain important properties such as transformation invariance and compliance with Renyi’s Postulate D for measures of statistical dependence. These results provide a means for selecting the most appropriate sensitivity measures for a particular reporting context and provide the analyst reasonable justifications for that selection. We illustrate these ideas using a large scale probabilistic safety assessment case study used to support decision making in the design and planning of a lunar space mission.

Suggested Citation

  • Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:595-610
    DOI: 10.1016/j.ejor.2020.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomson, William, 1979. "Eliciting production possibilities from a well-informed manager," Journal of Economic Theory, Elsevier, vol. 20(3), pages 360-380, June.
    2. M. Avriel & A. C. Williams, 1970. "The Value of Information and Stochastic Programming," Operations Research, INFORMS, vol. 18(5), pages 947-954, October.
    3. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    4. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    5. Nader Ebrahimi & Ehsan S. Soofi & Refik Soyer, 2010. "Information Measures in Perspective," International Statistical Review, International Statistical Institute, vol. 78(3), pages 383-412, December.
    6. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    7. Ronald W. Hilton, 1981. "The Determinants of Information Value: Synthesizing Some General Results," Management Science, INFORMS, vol. 27(1), pages 57-64, January.
    8. Ketzenberg, Michael E. & Rosenzweig, Eve D. & Marucheck, Ann E. & Metters, Richard D., 2007. "A framework for the value of information in inventory replenishment," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1230-1250, November.
    9. Gilboa, Itzhak & Lehrer, Ehud, 1991. "The value of information - An axiomatic approach," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 443-459.
    10. Ebrahimi, Nader & Jalali, Nima Y. & Soofi, Ehsan S., 2014. "Comparison, utility, and partition of dependence under absolutely continuous and singular distributions," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 32-50.
    11. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    12. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    13. Kao, Chiang & Steuer, Ralph E., 2016. "Value of information in portfolio selection, with a Taiwan stock market application illustration," European Journal of Operational Research, Elsevier, vol. 253(2), pages 418-427.
    14. Harvey M. Wagner, 1995. "Global Sensitivity Analysis," Operations Research, INFORMS, vol. 43(6), pages 948-969, December.
    15. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    16. Samson, D. & Wirth, A. & Rickard, J., 1989. "The value of information from multiple sources of uncertainty in decision analysis," European Journal of Operational Research, Elsevier, vol. 39(3), pages 254-260, April.
    17. Francis X. Diebold & Minchul Shin, 2017. "Assessing point forecast accuracy by stochastic error distance," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
    18. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    19. Gregory C. Critchfield & Keith E. Willard, 1986. "Probabilistic Analysis of Decision Trees Using Monte Carlo Simulation," Medical Decision Making, , vol. 6(2), pages 85-92, June.
    20. Manel Baucells & Emanuele Borgonovo, 2013. "Invariant Probabilistic Sensitivity Analysis," Management Science, INFORMS, vol. 59(11), pages 2536-2549, November.
    21. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    22. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    23. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    24. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    25. Ted G. Eschenbach, 1992. "Spiderplots versus Tornado Diagrams for Sensitivity Analysis," Interfaces, INFORMS, vol. 22(6), pages 40-46, December.
    26. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    27. Pflug, Georg Ch., 2006. "A value-of-information approach to measuring risk in multi-period economic activity," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 695-715, February.
    28. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    29. E. Borgonovo & C. L. Smith, 2011. "A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA," Operations Research, INFORMS, vol. 59(6), pages 1461-1476, December.
    30. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2009. "Sensitivity to Distance and Baseline Distributions in Forecast Evaluation," Management Science, INFORMS, vol. 55(4), pages 582-590, April.
    31. Ronald A. Howard, 1988. "Decision Analysis: Practice and Promise," Management Science, INFORMS, vol. 34(6), pages 679-695, June.
    32. Jean-Claude Fort & Thierry Klein & Nabil Rachdi, 2016. "New sensitivity analysis subordinated to a contrast," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(15), pages 4349-4364, August.
    33. Jeffrey M. Keisler & Zachary A. Collier & Eric Chu & Nina Sinatra & Igor Linkov, 2014. "Value of information analysis: the state of application," Environment Systems and Decisions, Springer, vol. 34(1), pages 3-23, March.
    34. Ronald L. Iman & Stephen C. Hora, 1990. "A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis," Risk Analysis, John Wiley & Sons, vol. 10(3), pages 401-406, September.
    35. Pfeifer, Christian & Schredelseker, Klaus & Seeber, Gilg U.H., 2009. "On the negative value of information in informationally inefficient markets: Calculations for large number of traders," European Journal of Operational Research, Elsevier, vol. 195(1), pages 117-126, May.
    36. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    37. Ketzenberg, Michael, 2009. "The value of information in a capacitated closed loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(2), pages 491-503, October.
    38. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    39. Simon French & Nikolaos Argyris, 2018. "Decision Analysis and Political Processes," Decision Analysis, INFORMS, vol. 15(4), pages 208-222, December.
    40. Mehrez, Abraham, 1985. "A note on the analysis of the expected value of perfect information with respect to a class of R&D projects," European Journal of Operational Research, Elsevier, vol. 19(2), pages 217-221, February.
    41. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    42. Hazen, Gordon B & Sounderpandian, Jayavel, 1999. "Lottery Acquisition versus Information Acquisition: Prices and Preference Reversals," Journal of Risk and Uncertainty, Springer, vol. 18(2), pages 125-136, August.
    43. A. Dawid, 2007. "The geometry of proper scoring rules," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(1), pages 77-93, March.
    44. Mehdi Shoja & Ehsan S. Soofi, 2017. "Uncertainty, information, and disagreement of economic forecasters," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 796-817, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    3. Straub, Daniel & Ehre, Max & Papaioannou, Iason, 2022. "Decision-theoretic reliability sensitivity," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    5. Ross Gruetzemacher & Kang Bok Lee & David Paradice, 2024. "Calibration training for improving probabilistic judgments using an interactive app," Futures & Foresight Science, John Wiley & Sons, vol. 6(2), June.
    6. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    7. Silvana M. Pesenti, 2021. "Reverse Sensitivity Analysis for Risk Modelling," Papers 2107.01065, arXiv.org, revised May 2022.
    8. Tobias Fissler & Hajo Holzmann, 2022. "Measurability of functionals and of ideal point forecasts," Papers 2203.08635, arXiv.org.
    9. Zdeněk Kala, 2021. "New Importance Measures Based on Failure Probability in Global Sensitivity Analysis of Reliability," Mathematics, MDPI, vol. 9(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    2. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    3. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    4. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    5. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    6. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    7. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    8. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    9. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    10. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    11. Manel Baucells & Emanuele Borgonovo, 2013. "Invariant Probabilistic Sensitivity Analysis," Management Science, INFORMS, vol. 59(11), pages 2536-2549, November.
    12. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    13. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    14. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    15. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    16. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    17. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    18. Katja Schilling & Daniel Bauer & Marcus C. Christiansen & Alexander Kling, 2020. "Decomposing Dynamic Risks into Risk Components," Management Science, INFORMS, vol. 66(12), pages 5738-5756, December.
    19. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    20. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:595-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.