IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v25y2022i3d10.1007_s10729-022-09596-2.html
   My bibliography  Save this article

Optimal breast cancer risk reduction policies tailored to personal risk level

Author

Listed:
  • Mehmet A. Ergun

    (University of Wisconsin-Madison
    Istanbul Technical University)

  • Ali Hajjar

    (Harvard Medical School, Boston
    Massachusetts General Hospital Institute for Technology Assessment)

  • Oguzhan Alagoz

    (University of Wisconsin-Madison)

  • Murtuza Rampurwala

    (Section of Hematology/OncologyUniversity of Chicago)

Abstract

Depending on personal and hereditary factors, each woman has a different risk of developing breast cancer, one of the leading causes of death for women. For women with a high-risk of breast cancer, their risk can be reduced by two main therapeutic approaches: 1) preventive treatments such as hormonal therapies (i.e., tamoxifen, raloxifene, exemestane); or 2) a risk reduction surgery (i.e., mastectomy). Existing national clinical guidelines either fail to incorporate or have limited use of the personal risk of developing breast cancer in their proposed risk reduction strategies. As a result, they do not provide enough resolution on the benefit-risk trade-off of an intervention policy as personal risk changes. In addressing this problem, we develop a discrete-time, finite-horizon Markov decision process (MDP) model with the objective of maximizing the patient’s total expected quality-adjusted life years. We find several useful insights some of which contradict the existing national breast cancer risk reduction recommendations. For example, we find that mastectomy is the optimal choice for the border-line high-risk women who are between ages 22 and 38. Additionally, in contrast to the National Comprehensive Cancer Network recommendations, we find that exemestane is a plausible, in fact, the best, option for high-risk postmenopausal women.

Suggested Citation

  • Mehmet A. Ergun & Ali Hajjar & Oguzhan Alagoz & Murtuza Rampurwala, 2022. "Optimal breast cancer risk reduction policies tailored to personal risk level," Health Care Management Science, Springer, vol. 25(3), pages 363-388, September.
  • Handle: RePEc:kap:hcarem:v:25:y:2022:i:3:d:10.1007_s10729-022-09596-2
    DOI: 10.1007/s10729-022-09596-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09596-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09596-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    2. Lisa M. Maillart & Julie Simmons Ivy & Scott Ransom & Kathleen Diehl, 2008. "Assessing Dynamic Breast Cancer Screening Policies," Operations Research, INFORMS, vol. 56(6), pages 1411-1427, December.
    3. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    4. Joseph S. Pliskin & Donald S. Shepard & Milton C. Weinstein, 1980. "Utility Functions for Life Years and Health Status," Operations Research, INFORMS, vol. 28(1), pages 206-224, February.
    5. Jagpreet Chhatwal & Oguzhan Alagoz & Elizabeth S. Burnside, 2010. "Optimal Breast Biopsy Decision-Making Based on Mammographic Features and Demographic Factors," Operations Research, INFORMS, vol. 58(6), pages 1577-1591, December.
    6. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    7. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    8. Oguzhan Alagoz & Donald A. Berry & Harry J. de Koning & Eric J. Feuer & Sandra J. Lee & Sylvia K. Plevritis & Clyde B. Schechter & Natasha K. Stout & Amy Trentham-Dietz & Jeanne S. Mandelblatt, 2018. "Introduction to the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Models," Medical Decision Making, , vol. 38(1_suppl), pages 3-8, April.
    9. Peter Doubilet & Colin B. Begg & Milton C. Weinstein & Peter Braun & Barbara J. McNeil, 1985. "Probabilistic Sensitivity Analysis Using Monte Carlo Simulation," Medical Decision Making, , vol. 5(2), pages 157-177, June.
    10. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    11. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    12. Mucahit Cevik & Turgay Ayer & Oguzhan Alagoz & Brian L. Sprague, 2018. "Analysis of Mammography Screening Policies under Resource Constraints," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 949-972, May.
    13. Janel Hanmer & William F. Lawrence & John P. Anderson & Robert M. Kaplan & Dennis G. Fryback, 2006. "Report of Nationally Representative Values for the Noninstitutionalized US Adult Population for 7 Health-Related Quality-of-Life Scores," Medical Decision Making, , vol. 26(4), pages 391-400, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sait Tunç & Oguzhan Alagoz & Elizabeth S. Burnside, 2022. "A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2361-2378, May.
    2. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    3. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    4. Ali Hajjar & Oguzhan Alagoz, 2023. "Personalized Disease Screening Decisions Considering a Chronic Condition," Management Science, INFORMS, vol. 69(1), pages 260-282, January.
    5. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    6. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    7. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    8. Eike Nohdurft & Elisa Long & Stefan Spinler, 2017. "Was Angelina Jolie Right? Optimizing Cancer Prevention Strategies Among BRCA Mutation Carriers," Decision Analysis, INFORMS, vol. 14(3), pages 139-169, September.
    9. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    10. Hui Zhang & Christian Wernz & Danny R. Hughes, 2018. "A Stochastic Game Analysis of Incentives and Behavioral Barriers in Chronic Disease Management," Service Science, INFORMS, vol. 10(3), pages 302-319, September.
    11. Mehmet U. S. Ayvaci & Oguzhan Alagoz & Elizabeth S. Burnside, 2012. "The Effect of Budgetary Restrictions on Breast Cancer Diagnostic Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 600-617, October.
    12. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    13. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    14. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    15. Vicki M. Bier & Simon French, 2020. "From the Editors: Decision Analysis Focus and Trends," Decision Analysis, INFORMS, vol. 17(1), pages 1-8, March.
    16. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    17. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    18. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    19. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    20. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:25:y:2022:i:3:d:10.1007_s10729-022-09596-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.