IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v18y1998i1p95-109.html
   My bibliography  Save this article

Sensitivity Analysis and the Expected Value of Perfect Information

Author

Listed:
  • James C. Felli
  • Gordon B. Hazen

Abstract

Measures of decision sensitivity that have been applied to medical decision problems were examined. Traditional threshold proximity methods have recently been supple mented by probabilistic sensitivity analysis, and by entropy-based measures of sen sitivity. The authors propose a fourth measure based upon the expected value of perfect information (EVPI), which they believe superior both methodologically and prag matically. Both the traditional and the newly suggested sensitivity measures focus en tirely on the likelihood of decision change without attention to corresponding changes in payoff, which are often small. Consequently, these measures can dramatically over state problem sensitivity. EVPI, on the other hand, incorporates both the probability of a decision change and the marginal benefit of such a change into a single measure, and therefore provides a superior picture of problem sensitivity. To lend support to this contention, the authors revisit three problems from the literature and compare the results of sensitivity analyses using probabilistic, entropy-based, and EVPI-based mea sures. Key words: sensitivity analysis; expected value of perfect information. (Med Decis Making 1998;18:95-109)

Suggested Citation

  • James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
  • Handle: RePEc:sae:medema:v:18:y:1998:i:1:p:95-109
    DOI: 10.1177/0272989X9801800117
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9801800117
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9801800117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C. Fishburn & Allan H. Murphy & Herbert H. Isaacs, 1968. "Sensitivity of Decisions to Probability Estimation Errors: A Reexamination," Operations Research, INFORMS, vol. 16(2), pages 254-267, April.
    2. Gregory C. Critchfield & Keith E. Willard, 1986. "Probabilistic Analysis of Decision Trees Using Monte Carlo Simulation," Medical Decision Making, , vol. 6(2), pages 85-92, June.
    3. David J. Spiegelhalter & Laurence S. Freedman & Mahesh K. B. Parmar, 1994. "Bayesian Approaches to Randomized Trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 357-387, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    2. Sumeet R. Patil & H. Christopher Frey, 2004. "Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 573-585, June.
    3. Charles F. Manski & Aleksey Tetenov, 2015. "Clinical trial design enabling ε-optimal treatment rules," CeMMAP working papers 60/15, Institute for Fiscal Studies.
    4. Isakov, Leah & Lo, Andrew W. & Montazerhodjat, Vahid, 2019. "Is the FDA too conservative or too aggressive?: A Bayesian decision analysis of clinical trial design," Journal of Econometrics, Elsevier, vol. 211(1), pages 117-136.
    5. Jingjing Ye & Gregory Reaman, 2022. "Improving Early Futility Determination by Learning from External Data in Pediatric Cancer Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 337-351, July.
    6. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    7. Keith E. Willard & Gregory C. Critchfield, 1986. "Probabilistic Analysis of Decision Trees Using Symbolic Algebra," Medical Decision Making, , vol. 6(2), pages 93-100, June.
    8. Bradley P. Carlin & James S. Hodges, 1999. "Hierarchical Proportional Hazards Regression Models for Highly Stratified Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1162-1170, December.
    9. Karl Claxton & John Posnett, 1996. "An economic approach to clinical trial design and research priority‐setting," Health Economics, John Wiley & Sons, Ltd., vol. 5(6), pages 513-524, November.
    10. Vinaytosh Mishra & Mohita G. Sharma, 2020. "Understanding Humanitarian Supply Chain Through Causal Modelling," South Asian Journal of Business and Management Cases, , vol. 9(3), pages 317-329, December.
    11. Norman Simón Rodríguez Cano, 2018. "Tendencias actuales en la evaluación de políticas públicas," Ensayos de Economía 17296, Universidad Nacional de Colombia Sede Medellín.
    12. Frits H.J. Roest & Marinus J.C. Eijkemans & Jos Van Der Donk & Peter C. Levendag & Cees A. Meeuwis & Paul I.M. Schmitz & J. Dik F. Habbema, 1997. "The Use of Confidence Intervals for Individual Utilities:," Medical Decision Making, , vol. 17(3), pages 285-291, July.
    13. Francisco-José Polo & Miguel Negrín & Xavier Badía & Montse Roset, 2005. "Bayesian regression models for cost-effectiveness analysis," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 6(1), pages 45-52, March.
    14. Martin E. Backhouse, 1998. "An investment appraisal approach to clinical trial design," Health Economics, John Wiley & Sons, Ltd., vol. 7(7), pages 605-619, November.
    15. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    16. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    17. Stanca Lorenzo, 2023. "Robust Bayesian Choice," Working papers 079, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    18. Peter F. Thall & Richard M. Simon & Yu Shen, 2000. "Approximate Bayesian Evaluation of Multiple Treatment Effects," Biometrics, The International Biometric Society, vol. 56(1), pages 213-219, March.
    19. Murray D. Krahn & Gary Naglie & David Naimark & Donald A. Redelmeier & Allan S. Detsky, 1997. "Primer on Medical Decision Analysis: Part 4-Analyzing the Model and Interpreting the Results," Medical Decision Making, , vol. 17(2), pages 142-151, April.
    20. Leonhard Held, 2020. "A new standard for the analysis and design of replication studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 431-448, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:18:y:1998:i:1:p:95-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.