IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v57y2021i1d10.1007_s10614-020-10038-w.html
   My bibliography  Save this article

Modelling Stock Markets by Multi-agent Reinforcement Learning

Author

Listed:
  • Johann Lussange

    (École Normale Supérieure)

  • Ivan Lazarevich

    (École Normale Supérieure
    Lobachevsky State University of Nizhny Novgorod)

  • Sacha Bourgeois-Gironde

    (École Normale Supérieure
    Université Paris II Panthéon-Assas)

  • Stefano Palminteri

    (École Normale Supérieure)

  • Boris Gutkin

    (École Normale Supérieure
    NU University Higher School of Economics)

Abstract

Quantitative finance has had a long tradition of a bottom-up approach to complex systems inference via multi-agent systems (MAS). These statistical tools are based on modelling agents trading via a centralised order book, in order to emulate complex and diverse market phenomena. These past financial models have all relied on so-called zero-intelligence agents, so that the crucial issues of agent information and learning, central to price formation and hence to all market activity, could not be properly assessed. In order to address this, we designed a next-generation MAS stock market simulator, in which each agent learns to trade autonomously via reinforcement learning. We calibrate the model to real market data from the London Stock Exchange over the years 2007 to 2018, and show that it can faithfully reproduce key market microstructure metrics, such as various price autocorrelation scalars over multiple time intervals. Agent learning thus enables accurate emulation of the market microstructure as an emergent property of the MAS.

Suggested Citation

  • Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
  • Handle: RePEc:kap:compec:v:57:y:2021:i:1:d:10.1007_s10614-020-10038-w
    DOI: 10.1007/s10614-020-10038-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10038-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10038-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    3. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Z. Eisler & J. Kertész, 2006. "Size matters: some stylized facts of the stock market revisited," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(1), pages 145-154, May.
    6. Stefano Palminteri & Mehdi Khamassi & Mateus Joffily & Giorgio Coricelli, 2015. "Contextual modulation of value signals in reward and punishment learning," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    7. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    8. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    9. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    10. P. Bak & S. F. Nrrelykke & M. Shubik, 2001. "Money and Goldstone modes," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 186-190.
    11. Elena Green & Daniel M. Heffernan, 2019. "An Agent-Based Model to Explain the Emergence of Stylised Facts in Log Returns," Papers 1901.05053, arXiv.org.
    12. Bouchaud, Jean-Philippe & Potters, Marc, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 60-70.
    13. Donangelo, Raul & Hansen, Alex & Sneppen, Kim & Souza, Sergio R., 2000. "Modelling an imperfect market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 469-478.
    14. Vandewalle, N. & Ausloos, M., 1997. "Coherent and random sequences in financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 454-459.
    15. Krishna Rao & Argia M. Sbordone & Andrea Tambalotti & Kieran Walsh, 2010. "Policy analysis using DSGE models: an introduction," Economic Policy Review, Federal Reserve Bank of New York, vol. 16(Oct), pages 23-43.
    16. Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "A fractional reaction–diffusion description of supply and demand," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(2), pages 1-7, February.
    17. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    18. Zoltan Eisler & Janos Kertesz, 2005. "Size matters: some stylized facts of the stock market revisited," Papers physics/0508156, arXiv.org, revised May 2006.
    19. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    20. Solomon, Sorin & Weisbuch, Gerard & de Arcangelis, Lucilla & Jan, Naeem & Stauffer, Dietrich, 2000. "Social percolation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 239-247.
    21. Per Bak & Simon F. Norrelykke & Martin Shubik, 1998. "The Dynamics of Money," Research in Economics 98-11-102e, Santa Fe Institute.
    22. Jan A. Lipski & Ryszard Kutner, 2013. "Agent-Based Stock Market Model with Endogenous Agents' Impact," Papers 1310.0762, arXiv.org, revised Dec 2013.
    23. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    24. Stefano Palminteri & Mehdi Khamassi & Mateus Joffily & Giorgio Coricelli, 2015. "Contextual modulation of value signals in reward and punishment learning," Post-Print halshs-01236045, HAL.
    25. Zhi-Feng Huang & Sorin Solomon, 2000. "Power, Levy, Exponential and Gaussian Regimes in Autocatalytic Financial Systems," Papers cond-mat/0008026, arXiv.org.
    26. Arkady Konovalov & Ian Krajbich, 2016. "Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    27. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    28. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    29. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    30. Gualdi, Stanislao & Tarzia, Marco & Zamponi, Francesco & Bouchaud, Jean-Philippe, 2015. "Tipping points in macroeconomic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 29-61.
    31. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    32. Pramod Kumar Naik & Rangan Gupta & Puja Padhi, 2018. "The Relationship Between Stock Market Volatility And Trading Volume: Evidence From South Africa," Journal of Developing Areas, Tennessee State University, College of Business, vol. 52(1), pages 99-114, January-M.
    33. Erev, I. & Roth, Alvin E., 2014. "Maximization, learning, and economic behavior," Scholarly Articles 30831199, Harvard University Department of Economics.
    34. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    35. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    36. Anna Dodonova & Yuri Khoroshilov, 2018. "Private information in futures markets: An experimental study," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 39(1), pages 65-70, January.
    37. Moshe Levy & Sorin Solomon, 1996. "Power Laws Are Logarithmic Boltzmann Laws," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 595-601.
    38. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    39. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    40. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    41. R. Donangelo & K. Sneppen, 1999. "Self-organization of value and demand," Papers cond-mat/9906298, arXiv.org, revised Apr 2000.
    42. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    43. Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
    44. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    45. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    46. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    47. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    48. Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "A fractional reaction–diffusion description of supply and demand," Post-Print hal-02323544, HAL.
    49. Donangelo, R & Sneppen, K, 2000. "Self-organization of value and demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 276(3), pages 572-580.
    50. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    51. Germain Lefebvre & Maël Lebreton & Florent Meyniel & Sacha Bourgeois-Gironde & Stefano Palminteri, 2017. "Behavioural and neural characterization of optimistic reinforcement learning," Nature Human Behaviour, Nature, vol. 1(4), pages 1-9, April.
    52. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    53. Sylvain Barde, 2015. "A Practical, Universal, Information Criterion over Nth Order Markov Processes," Studies in Economics 1504, School of Economics, University of Kent.
    54. Riccardo Boero & Matteo Morini & Michele Sonnessa & Pietro Terna, 2015. "Agent-based Models of the Economy," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-33981-2.
    55. De Vries, C.G. & Leuven, K.U., 1994. "Stylized Facts of Nominal Exchange Rate Returns," Papers 94-002, Purdue University, Krannert School of Management - Center for International Business Education and Research (CIBER).
    56. Marc Potters & Jean-Philippe Bouchaud, 2001. "More stylized facts of financial markets: leverage effect and downside correlations," Science & Finance (CFM) working paper archive 29960, Science & Finance, Capital Fund Management.
    57. Moshe Levy & Sorin Solomon & Givat Ram, 1996. "Dynamical Explanation For The Emergence Of Power Law In A Stock Market Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 65-72.
    58. I. Momennejad & E. M. Russek & J. H. Cheong & M. M. Botvinick & N. D. Daw & S. J. Gershman, 2017. "The successor representation in human reinforcement learning," Nature Human Behaviour, Nature, vol. 1(9), pages 680-692, September.
    59. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Bodor & Laurent Carlier, 2024. "A Novel Approach to Queue-Reactive Models: The Importance of Order Sizes," Papers 2405.18594, arXiv.org.
    2. Alejandra de la Rica Escudero & Eduardo C. Garrido-Merchan & Maria Coronado-Vaca, 2024. "Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent," Papers 2407.14486, arXiv.org.
    3. David G. Green, 2023. "Emergence in complex networks of simple agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 419-462, July.
    4. Zhiyuan Yao & Zheng Li & Matthew Thomas & Ionut Florescu, 2024. "Reinforcement Learning in Agent-Based Market Simulation: Unveiling Realistic Stylized Facts and Behavior," Papers 2403.19781, arXiv.org.
    5. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klöckl, 2024. "Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 529-576, February.
    6. Xiao-Yang Liu & Jingyang Rui & Jiechao Gao & Liuqing Yang & Hongyang Yang & Zhaoran Wang & Christina Dan Wang & Jian Guo, 2021. "FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance," Papers 2112.06753, arXiv.org, revised Mar 2022.
    7. Olschewski, Sebastian & Diao, Linan & Rieskamp, Jörg, 2021. "Reinforcement learning about asset variability and correlation in repeated portfolio decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
    2. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    3. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    4. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    5. repec:hal:journl:hal-04790290 is not listed on IDEAS
    6. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    7. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    8. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    9. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    10. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    11. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    14. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    17. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    18. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    19. Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    20. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    21. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:57:y:2021:i:1:d:10.1007_s10614-020-10038-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.