IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v95y2024ipbs1057521924003582.html
   My bibliography  Save this article

Trading strategies and Financial Performances: A simulation approach

Author

Listed:
  • Biondo, Alessio Emanuele
  • Mazzarino, Laura
  • Pluchino, Alessandro

Abstract

This paper presents a comparative analysis of three major approaches to portfolio strategies: the maximization of the Sharpe ratio, the minimization of the Expected Shortfall and “zero–intelligence” trading. Data from financial time series and from a simulated order-book are used to analyse how various strategies affect investors’ portfolio performance and volatility. Results show, firstly, that the superiority of technical and analytical approaches over a random strategy is not obvious. Secondly, that strategies with lower and less risky profits may reveal preferable to those with higher returns and risk. Balancing this trade-off is crucial for stable financial growth.

Suggested Citation

  • Biondo, Alessio Emanuele & Mazzarino, Laura & Pluchino, Alessandro, 2024. "Trading strategies and Financial Performances: A simulation approach," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  • Handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003582
    DOI: 10.1016/j.irfa.2024.103426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521924003582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2024.103426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    3. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    5. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    6. Campbell, Rachel & Huisman, Ronald & Koedijk, Kees, 2001. "Optimal portfolio selection in a Value-at-Risk framework," Journal of Banking & Finance, Elsevier, vol. 25(9), pages 1789-1804, September.
    7. Čuljak, Maria & Tomić, Bojan & Žiković, Saša, 2022. "Benefits of sectoral cryptocurrency portfolio optimization," Research in International Business and Finance, Elsevier, vol. 60(C).
    8. Bak, P. & Paczuski, M. & Shubik, M., 1997. "Price variations in a stock market with many agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 430-453.
    9. Westerhoff, Frank H., 2004. "Multiasset Market Dynamics," Macroeconomic Dynamics, Cambridge University Press, vol. 8(5), pages 596-616, November.
    10. Feldman, Todd, 2010. "Portfolio manager behavior and global financial crises," Journal of Economic Behavior & Organization, Elsevier, vol. 75(2), pages 192-202, August.
    11. Cincotti, Silvano & M. Focardi, Sergio & Marchesi, Michele & Raberto, Marco, 2003. "Who wins? Study of long-run trader survival in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 227-233.
    12. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Dirk Helbing, 2013. "Are Random Trading Strategies More Successful than Technical Ones?," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    13. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    14. Westerhoff Frank H. & Reitz Stefan, 2003. "Nonlinearities and Cyclical Behavior: The Role of Chartists and Fundamentalists," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-15, December.
    15. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    17. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    18. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(4), pages 559-562, December.
    19. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    20. Carl Chiarella & Giulia Iori, 2002. "A simulation analysis of the microstructure of double auction markets," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 346-353.
    21. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    22. Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
    23. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    24. Farmer, J. Doyne & Axtell, Robert L., 2022. "Agent-Based Modeling in Economics and Finance: Past, Present, and Future," INET Oxford Working Papers 2022-10, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    25. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    26. Tramontana, Fabio & Westerhoff, Frank & Gardini, Laura, 2015. "A simple financial market model with chartists and fundamentalists: Market entry levels and discontinuities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 16-40.
    27. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    28. Frankel, Jeffrey A & Froot, Kenneth A, 1990. "Chartists, Fundamentalists, and Trading in the Foreign Exchange Market," American Economic Review, American Economic Association, vol. 80(2), pages 181-185, May.
    29. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    30. S Satchell & A Scowcroft, 2000. "A demystification of the Black–Litterman model: Managing quantitative and traditional portfolio construction," Journal of Asset Management, Palgrave Macmillan, vol. 1(2), pages 138-150, September.
    31. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    32. Yi-Chein Chiang & Mei-Chu Ke & Tung Liang Liao & Cin-Dian Wang, 2012. "Are technical trading strategies still profitable? Evidence from the Taiwan Stock Index Futures Market," Applied Financial Economics, Taylor & Francis Journals, vol. 22(12), pages 955-965, June.
    33. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    34. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    35. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    36. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    37. Eero P䴤ri & Mika Vilska, 2014. "Performance of moving average trading strategies over varying stock market conditions: the Finnish evidence," Applied Economics, Taylor & Francis Journals, vol. 46(24), pages 2851-2872, August.
    38. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    39. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda, 2012. "The beneficial role of random strategies in social and financial systems," Papers 1209.5881, arXiv.org, revised Jan 2013.
    40. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    41. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    42. Thomas H. Goodwin, 1998. "The Information Ratio," Financial Analysts Journal, Taylor & Francis Journals, vol. 54(4), pages 34-43, July.
    43. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    44. A. E. Biondo & A. Pluchino & A. Rapisarda & D. Helbing, 2013. "Are random trading strategies more successful than technical ones?," Papers 1303.4351, arXiv.org, revised Jul 2013.
    45. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    46. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    47. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    48. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    49. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    50. Andrea Consiglio & Valerio Lacagnina & Annalisa Russino, 2005. "A simulation analysis of the microstructure of an order driven financial market with multiple securities and portfolio choices," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 71-87.
    51. Zeeman, E. C., 1974. "On the unstable behaviour of stock exchanges," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 39-49, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    2. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    3. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    5. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    6. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    7. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    8. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    10. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    14. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    15. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    16. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    17. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    18. Qi Nan Zhai, 2015. "Asset Pricing Under Ambiguity and Heterogeneity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2015, January-A.
    19. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    20. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.

    More about this item

    Keywords

    Sharpe ratio; Expected Shortfall; Portfolio performance; Order-book; Simulations;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.