IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v1y2017i9d10.1038_s41562-017-0180-8.html
   My bibliography  Save this article

The successor representation in human reinforcement learning

Author

Listed:
  • I. Momennejad

    (Princeton University)

  • E. M. Russek

    (New York University)

  • J. H. Cheong

    (Dartmouth College)

  • M. M. Botvinick

    (University College London)

  • N. D. Daw

    (Princeton University)

  • S. J. Gershman

    (Harvard University)

Abstract

Theories of reward learning in neuroscience have focused on two families of algorithms thought to capture deliberative versus habitual choice. ‘Model-based’ algorithms compute the value of candidate actions from scratch, whereas ‘model-free’ algorithms make choice more efficient but less flexible by storing pre-computed action values. We examine an intermediate algorithmic family, the successor representation, which balances flexibility and efficiency by storing partially computed action values: predictions about future events. These pre-computation strategies differ in how they update their choices following changes in a task. The successor representation’s reliance on stored predictions about future states predicts a unique signature of insensitivity to changes in the task’s sequence of events, but flexible adjustment following changes to rewards. We provide evidence for such differential sensitivity in two behavioural studies with humans. These results suggest that the successor representation is a computational substrate for semi-flexible choice in humans, introducing a subtler, more cognitive notion of habit.

Suggested Citation

  • I. Momennejad & E. M. Russek & J. H. Cheong & M. M. Botvinick & N. D. Daw & S. J. Gershman, 2017. "The successor representation in human reinforcement learning," Nature Human Behaviour, Nature, vol. 1(9), pages 680-692, September.
  • Handle: RePEc:nat:nathum:v:1:y:2017:i:9:d:10.1038_s41562-017-0180-8
    DOI: 10.1038/s41562-017-0180-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-017-0180-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-017-0180-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    2. Jaron T Colas & Wolfgang M Pauli & Tobias Larsen & J Michael Tyszka & John P O’Doherty, 2017. "Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-32, October.
    3. Momchil S Tomov & Samyukta Yagati & Agni Kumar & Wanqian Yang & Samuel J Gershman, 2020. "Discovery of hierarchical representations for efficient planning," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-42, April.
    4. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
    5. Julie J Lee & Mehdi Keramati, 2017. "Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-15, September.
    6. Ruohan Zhang & Shun Zhang & Matthew H Tong & Yuchen Cui & Constantin A Rothkopf & Dana H Ballard & Mary M Hayhoe, 2018. "Modeling sensory-motor decisions in natural behavior," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-22, October.
    7. Evan M Russek & Ida Momennejad & Matthew M Botvinick & Samuel J Gershman & Nathaniel D Daw, 2017. "Predictive representations can link model-based reinforcement learning to model-free mechanisms," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-35, September.
    8. Lucas Lehnert & Michael L Littman & Michael J Frank, 2020. "Reward-predictive representations generalize across tasks in reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-27, October.
    9. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    10. Nicholas T Franklin & Michael J Frank, 2018. "Compositional clustering in task structure learning," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-25, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:1:y:2017:i:9:d:10.1038_s41562-017-0180-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.