IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v91y2018i2d10.1140_epjb_e2017-80246-9.html
   My bibliography  Save this article

A fractional reaction–diffusion description of supply and demand

Author

Listed:
  • Michael Benzaquen

    (Ladhyx, UMR CNRS 7646, École Polytechnique
    Capital Fund Management)

  • Jean-Philippe Bouchaud

    (Capital Fund Management)

Abstract

We suggest that the broad distribution of time scales in financial markets could be a crucial ingredient to reproduce realistic price dynamics in stylised Agent-Based Models. We propose a fractional reaction–diffusion model for the dynamics of latent liquidity in financial markets, where agents are very heterogeneous in terms of their characteristic frequencies. Several features of our model are amenable to an exact analytical treatment. We find in particular that the impact is a concave function of the transacted volume (aka the “square-root impact law”), as in the normal diffusion limit. However, the impact kernel decays as t–β with β = 1∕2 in the diffusive case, which is inconsistent with market efficiency. In the sub-diffusive case the decay exponent β takes any value in [0, 1∕2], and can be tuned to match the empirical value β ≈ 1∕4. Numerical simulations confirm our theoretical results. Several extensions of the model are suggested.

Suggested Citation

  • Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "A fractional reaction–diffusion description of supply and demand," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(2), pages 1-7, February.
  • Handle: RePEc:spr:eurphb:v:91:y:2018:i:2:d:10.1140_epjb_e2017-80246-9
    DOI: 10.1140/epjb/e2017-80246-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2017-80246-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2017-80246-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    2. Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
    3. Johann Lussange & Boris Gutkin, 2023. "Order book regulatory impact on stock market quality: a multi-agent reinforcement learning perspective," Papers 2302.04184, arXiv.org.
    4. Qing Tang & Fabio Camilli, 2020. "Variational Time-Fractional Mean Field Games," Dynamic Games and Applications, Springer, vol. 10(2), pages 573-588, June.
    5. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    2. B. Tóth & F. Lillo & J. D. Farmer, 2010. "Segmentation algorithm for non-stationary compound Poisson processes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 78(2), pages 235-243, November.
    3. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    4. Michael Benzaquen & Jean-Philippe Bouchaud, 2017. "A fractional reaction-diffusion description of supply and demand," Papers 1704.02638, arXiv.org, revised Aug 2017.
    5. Rama Cont & Adrien De Larrard, 2011. "Price dynamics in a Markovian limit order market," Papers 1104.4596, arXiv.org.
    6. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    7. Jonathan A. Ch'avez-Casillas & Jos'e E. Figueroa-L'opez, 2014. "One-level limit order book models with memory and variable spread," Papers 1407.5684, arXiv.org, revised Mar 2016.
    8. M. Cristelli & V. Alfi & L. Pietronero & A. Zaccaria, 2010. "Liquidity crisis, granularity of the order book and price fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 41-49, January.
    9. Alexander Lykov & Stepan Muzychka & Kirill Vaninsky, 2016. "Investor'S Sentiment In Multi-Agent Model Of The Continuous Double Auction," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-29, September.
    10. Ban Zheng & Eric Moulines & Fr'ed'eric Abergel, 2012. "Price Jump Prediction in Limit Order Book," Papers 1204.1381, arXiv.org.
    11. Aaron Wheeler & Jeffrey D. Varner, 2023. "Scalable Agent-Based Modeling for Complex Financial Market Simulations," Papers 2312.14903, arXiv.org, revised Jan 2024.
    12. Enzo Busseti & Fabrizio Lillo, 2012. "Calibration of optimal execution of financial transactions in the presence of transient market impact," Papers 1206.0682, arXiv.org.
    13. Michael Benzaquen & Jean-Philippe Bouchaud, 2018. "A fractional reaction–diffusion description of supply and demand," Post-Print hal-02323544, HAL.
    14. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    15. Lublóy, Ágnes & Gyarmati, Ákos & Váradi, Kata, 2012. "Virtuális árhatás a Budapesti Értéktőzsdén [Virtual price effects on the Budapest stock exchange]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 508-539.
    16. Chen, Jingnan & Feng, Liming & Peng, Jiming, 2015. "Optimal deleveraging with nonlinear temporary price impact," European Journal of Operational Research, Elsevier, vol. 244(1), pages 240-247.
    17. Jakob Albers & Mihai Cucuringu & Sam Howison & Alexander Y. Shestopaloff, 2021. "Fragmentation, Price Formation, and Cross-Impact in Bitcoin Markets," Papers 2108.09750, arXiv.org.
    18. Stephan Grimm & Thomas Guhr, 2018. "How spread changes affect the order book: Comparing the price responses of order deletions and placements to trades," Papers 1812.09067, arXiv.org.
    19. Ban Zheng & Eric Moulines & Frédéric Abergel, 2013. "Price jump prediction in a limit order book," Post-Print hal-00684716, HAL.
    20. Chávez-Casillas, Jonathan A. & Figueroa-López, José E., 2017. "A one-level limit order book model with memory and variable spread," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2447-2481.
    21. F. Caccioli & M. Marsili & P. Vivo, 2009. "Eroding market stability by proliferation of financial instruments," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 467-479, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:91:y:2018:i:2:d:10.1140_epjb_e2017-80246-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.