IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v51y2006i1p145-154.html
   My bibliography  Save this article

Size matters: some stylized facts of the stock market revisited

Author

Listed:
  • Z. Eisler
  • J. Kertész

Abstract

We reanalyze high resolution data from the New York Stock Exchange and find a monotonic (but not power law) variation of the mean value per trade, the mean number of trades per minute and the mean trading activity with company capitalization. We show that the second moment of the traded value distribution is finite. Consequently, the Hurst exponents for the corresponding time series can be calculated. These are, however, non-universal: The persistence grows with larger capitalization and this results in a logarithmically increasing Hurst exponent. A similar trend is displayed by intertrade time intervals. Finally, we demonstrate that the distribution of the intertrade times is better described by a multiscaling ansatz than by simple gap scaling. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • Z. Eisler & J. Kertész, 2006. "Size matters: some stylized facts of the stock market revisited," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 51(1), pages 145-154, May.
  • Handle: RePEc:spr:eurphb:v:51:y:2006:i:1:p:145-154
    DOI: 10.1140/epjb/e2006-00189-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00189-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00189-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    2. Gallegati, Mauro & Keen, Steve & Lux, Thomas & Ormerod, Paul, 2006. "Worrying trends in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 1-6.
    3. Jean-Philippe Bouchaud, 1998. "Elements for a theory of financial risks," Science & Finance (CFM) working paper archive 500042, Science & Finance, Capital Fund Management.
    4. Ainslie Yuen & Plamen Ch. Ivanov, 2005. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," Papers physics/0508203, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    2. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    3. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    4. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    5. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    6. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    7. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    8. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    9. Politi, Mauro & Scalas, Enrico, 2008. "Fitting the empirical distribution of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2025-2034.
    10. Fabio Caccioli & Jean-Philippe Bouchaud & J. Doyne Farmer, 2012. "A proposal for impact-adjusted valuation: Critical leverage and execution risk," Papers 1204.0922, arXiv.org, revised Aug 2012.
    11. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    12. Zoltan Eisler & Janos Kertesz & Fabrizio Lillo & Rosario Mantegna, 2009. "Diffusive behavior and the modeling of characteristic times in limit order executions," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 547-563.
    13. Plamen Ch Ivanov & Ainslie Yuen & Pandelis Perakakis, 2014. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    14. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    15. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    16. Bertram, William K., 2008. "Measuring time dependent volatility and cross-sectional correlation in Australian equity returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3183-3191.
    17. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    18. Stanislao Gualdi & Giulio Cimini & Kevin Primicerio & Riccardo Di Clemente & Damien Challet, 2016. "Statistically validated network of portfolio overlaps and systemic risk," Post-Print hal-01705092, HAL.
    19. Vladimir Filimonov & Didier Sornette, 2013. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Papers 1308.6756, arXiv.org, revised Jul 2014.
    20. Qing Cai & Hai-Chuan Xu & Wei-Xing Zhou, 2016. "Taylor's Law of temporal fluctuation scaling in stock illiquidity," Papers 1610.01149, arXiv.org.
    21. Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
    22. Bertram, William K., 2009. "Optimal trading strategies for Itô diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2865-2873.
    23. Kang, Bo Soo & Ryu, Doojin & Ryu, Doowon, 2014. "Phase-shifting behaviour revisited: An alternative measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 167-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    2. Jennifer Jhun & Patricia Palacios & James Owen Weatherall, 2017. "Market Crashes as Critical Phenomena? Explanation, Idealization, and Universality in Econophysics," Papers 1704.02392, arXiv.org.
    3. Zoltan Eisler & Janos Kertesz, 2006. "Liquidity and the multiscaling properties of the volume traded on the stock market," Papers physics/0606161, arXiv.org.
    4. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    5. A. Svorenčík & F. Slanina, 2007. "Interacting gaps model, dynamics of order book, and stock-market fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(4), pages 453-462, June.
    6. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    7. F. Slanina, 2008. "Critical comparison of several order-book models for stock-market fluctuations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(2), pages 225-240, January.
    8. M. Boguñá & J. Masoliver, 2004. "Conditional dynamics driving financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 347-352, August.
    9. Sabrina Camargo & Silvio M. Duarte Queiros & Celia Anteneodo, 2013. "Bridging stylized facts in finance and data non-stationarities," Papers 1302.3197, arXiv.org, revised May 2013.
    10. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    11. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    12. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    13. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    14. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    15. Michelle B Graczyk & Sílvio M Duarte Queirós, 2017. "Intraday seasonalities and nonstationarity of trading volume in financial markets: Collective features," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.
    16. Kutner, Ryszard & Wysocki, Krzysztof, 1999. "Applications of statistical mechanics to non-brownian random motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 67-84.
    17. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    18. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    19. Zhang, J.W. & Zhang, Y. & Kleinert, H., 2007. "Power tails of index distributions in chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 166-172.
    20. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:51:y:2006:i:1:p:145-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.