FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michael Karpe & Jin Fang & Zhongyao Ma & Chen Wang, 2020. "Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation," Papers 2006.05574, arXiv.org, revised Sep 2020.
- Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
- Raberto, Marco & Cincotti, Silvano & Focardi, Sergio M. & Marchesi, Michele, 2001.
"Agent-based simulation of a financial market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 319-327.
- Marco Raberto & Silvano Cincotti & Sergio M. Focardi & Michele Marchesi, 2001. "Agent-based simulation of a financial market," Papers cond-mat/0103600, arXiv.org, revised Mar 2001.
- Agrim Gupta & Silvio Savarese & Surya Ganguli & Li Fei-Fei, 2021. "Embodied intelligence via learning and evolution," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Suman Ravuri & Karel Lenc & Matthew Willson & Dmitry Kangin & Remi Lam & Piotr Mirowski & Megan Fitzsimons & Maria Athanassiadou & Sheleem Kashem & Sam Madge & Rachel Prudden & Amol Mandhane & Aidan C, 2021. "Skilful precipitation nowcasting using deep generative models of radar," Nature, Nature, vol. 597(7878), pages 672-677, September.
- Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
- Wenhang Bao & Xiao-yang Liu, 2019. "Multi-Agent Deep Reinforcement Learning for Liquidation Strategy Analysis," Papers 1906.11046, arXiv.org.
- Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Maarten P. Scholl & Anisoara Calinescu & J. Doyne Farmer, 2021.
"How market ecology explains market malfunction,"
Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(26), pages 2015574118-, June.
- Maarten P. Scholl & Anisoara Calinescu & J. Doyne Farmer, 2020. "How Market Ecology Explains Market Malfunction," Papers 2009.09454, arXiv.org, revised Jan 2021.
- Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao-Yang Liu & Ziyi Xia & Jingyang Rui & Jiechao Gao & Hongyang Yang & Ming Zhu & Christina Dan Wang & Zhaoran Wang & Jian Guo, 2022. "FinRL-Meta: Market Environments and Benchmarks for Data-Driven Financial Reinforcement Learning," Papers 2211.03107, arXiv.org.
- Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.
- Mao Guan & Xiao-Yang Liu, 2021. "Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach," Papers 2111.03995, arXiv.org, revised Dec 2021.
- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Xiao-Yang Liu & Hongyang Yang & Jiechao Gao & Christina Dan Wang, 2021. "FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance," Papers 2111.09395, arXiv.org.
- Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
- Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
- Antonio Briola & Jeremy Turiel & Riccardo Marcaccioli & Alvaro Cauderan & Tomaso Aste, 2021. "Deep Reinforcement Learning for Active High Frequency Trading," Papers 2101.07107, arXiv.org, revised Aug 2023.
- Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
- E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001.
"Microscopic Models of Financial Markets,"
Papers
cond-mat/0110354, arXiv.org.
- Samanidou, Egle & Zschischang, Elmar & Stauffer, Dietrich & Lux, Thomas, 2006. "Microscopic models of financial markets," Economics Working Papers 2006-15, Christian-Albrechts-University of Kiel, Department of Economics.
- Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
- Thiago W. Alves & Ionuţ Florescu & Dragoş Bozdog, 2023. "Insights on the Statistics and Market Behavior of Frequent Batch Auctions," Mathematics, MDPI, vol. 11(5), pages 1-26, March.
- Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
- Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003.
"Traders' Long-Run Wealth in an Artificial Financial Market,"
Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
- Marco Raberto & Silvano Cincott & Sergio M. Focardi & Michele Marchesi, 2002. "Traders’ long-run wealth in an artificial financial market," Computing in Economics and Finance 2002 301, Society for Computational Economics.
- Silvano Cincotti & Marco Raberto & Andrea Teglio, 2022. "Why do we need agent-based macroeconomics?," Review of Evolutionary Political Economy, Springer, vol. 3(1), pages 5-29, April.
- Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
- Olschewski, Sebastian & Diao, Linan & Rieskamp, Jörg, 2021. "Reinforcement learning about asset variability and correlation in repeated portfolio decisions," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Silvano Cincotti & Wolfram Elsner & Nathalie Lazaric & Anastasia Nesvetailova & Engelbert Stockhammer, 2020.
"Towards an evolutionary political economy. Editorial to the inaugural issue of the Review of Evolutionary Political Economy REPE,"
Review of Evolutionary Political Economy, Springer, vol. 1(1), pages 1-12, May.
- Nathalie Lazaric & Silvano Cincotti & Wolfram Elsner & Anastasia Nesvetailova & Engelbert Stockhammer, 2020. "Towards an evolutionary political economy. Editorial to the inaugural issue of the Review of Evolutionary Political Economy REPE," Post-Print halshs-03000271, HAL.
- Tubbenhauer, Tobias & Fieberg, Christian & Poddig, Thorsten, 2021. "Multi-agent-based VaR forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
- Derveeuw, Julien & Beaufils, Bruno & Mathieu, Philippe & Brandouy, Olivier, 2007.
"Testing double auction as a component within a generic market model architecture,"
MPRA Paper
4918, University Library of Munich, Germany.
- J. Derveeuw & B. Beaufils & O. Brandouy & P. Mathieu, 2007. "Testing double auction as a component within a generic market model architecture," Post-Print hal-00325855, HAL.
- Bruno Beaufils & Olivier Brandouy & Julien Derveeuw & Philippe Mathieu, 2007. "Testing double auction as a component within a generic market model architecture," Post-Print hal-00826143, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-01-17 (Big Data)
- NEP-CMP-2022-01-17 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.06753. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.