IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v242y1997i1p90-94.html
   My bibliography  Save this article

New evidence for the power-law distribution of wealth

Author

Listed:
  • Levy, Moshe
  • Solomon, Sorin

Abstract

We present a non-conventional approach for studying the distribution of wealth in society. We analyze data from the 1996 Forbes 400 list of the richest people in the US. Our results confirm that wealth is distributed according to a power law. The measured exponent of the power-law is 1.36. As theoretically predicted, this value is in close agreement with the exponent of the Lévy distribution of stock market fluctuations.

Suggested Citation

  • Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
  • Handle: RePEc:eee:phsmap:v:242:y:1997:i:1:p:90-94
    DOI: 10.1016/S0378-4371(97)00217-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437197002173
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(97)00217-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moshe Levy & Sorin Solomon, 1996. "Power Laws Are Logarithmic Boltzmann Laws," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 595-601.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saiz, A., 2010. "Boltzmann power laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 225-236.
    2. Francesco Vallone, 2006. "Analysis of Stochstic Evolution," Papers math-ph/0607066, arXiv.org.
    3. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    4. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    5. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Urban Structure and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 597-624.
    6. de Wit, Gerrit, 2005. "Firm size distributions: An overview of steady-state distributions resulting from firm dynamics models," International Journal of Industrial Organization, Elsevier, vol. 23(5-6), pages 423-450, June.
    7. Caiani, Alessandro & Godin, Antoine & Caverzasi, Eugenio & Gallegati, Mauro & Kinsella, Stephen & Stiglitz, Joseph E., 2016. "Agent based-stock flow consistent macroeconomics: Towards a benchmark model," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 375-408.
    8. Jess Benhabib & Alberto Bisin, 2018. "Skewed Wealth Distributions: Theory and Empirics," Journal of Economic Literature, American Economic Association, vol. 56(4), pages 1261-1291, December.
    9. J. Emeterio Navarro-Barrientos & Frank E. Walter & Frank Schweitzer, 2008. "Risk-Seeking Versus Risk-Avoiding Investments In Noisy Periodic Environments," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 971-994.
    10. Amaral, L.A.N. & Gopikrishnan, P. & Plerou, V. & Stanley, H.E., 2001. "A model for the growth dynamics of economic organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 127-136.
    11. Gianluca Carnabuci, 2013. "The distribution of technological progress," Empirical Economics, Springer, vol. 44(3), pages 1143-1154, June.
    12. Geoff Willis & Juergen Mimkes, 2004. "Evidence for the Independence of Waged and Unwaged Income, Evidence for Boltzmann Distributions in Waged Income, and the Outlines of a Coherent Theory of Income Distribution," Microeconomics 0408001, University Library of Munich, Germany.
    13. Sorin Solomon & Moshe Levy, 2000. "Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in Microscopic Simulation of the LLS Stock Market Model," Papers cond-mat/0005416, arXiv.org.
    14. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    15. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    16. Solomon, Sorin & Richmond, Peter, 2001. "Power laws of wealth, market order volumes and market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 188-197.
    17. Sündal, Doğuhan, 2024. "Relative size distribution of business firms—A QRSE approach," Economic Modelling, Elsevier, vol. 140(C).
    18. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    19. A. Saichev & Y. Malevergne & D. Sornette, 2008. "Theory of Zipf's Law and of General Power Law Distributions with Gibrat's law of Proportional Growth," Papers 0808.1828, arXiv.org.
    20. Podobnik, Boris & Gabor, Andrijana Musura & Kirbis, Ivona Skreblin, 2019. "Scale-free growth of human society based on cooperation and altruistic punishment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 613-619.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:242:y:1997:i:1:p:90-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.