IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2005-45-2.html
   My bibliography  Save this article

Truth and Cognitive Division of Labour: First Steps Towards a Computer Aided Social Epistemology

Author

Listed:
  • Rainer Hegselmann
  • Ulrich Krause

Abstract

The paper analyzes the chances for the truth to be found and broadly accepted under conditions of cognitive division of labour combined with a social exchange process. Cognitive division of labour means, that only some individuals are active truth seekers, possibly with different capacities. The social exchange process consists in an exchange of opinions between all individuals, whether truth seekers or not. We de- velop a model which is investigated by both, mathematical tools and computer simulations. As an analytical result the Funnel theorem states that under rather weak conditions on the social process a consensus on the truth will be reached if all individuals posses an arbitrarily small inclination for truth seeking. The Leading the pack theorem states that under certain conditions even a single truth seeker may lead all individuals to the truth. Systematic simulations analyze how close and how fast groups can get to the truth depending on the frequency of truth seekers, their capacities as truth seekers, the position of the truth (more to the extreme or more in the centre of an opinion space), and the willingness to take into account the opinions of others when exchanging and updating opinions. A tricky movie visualizes simulations results in a parameter space of higher dimensions.

Suggested Citation

  • Rainer Hegselmann & Ulrich Krause, 2006. "Truth and Cognitive Division of Labour: First Steps Towards a Computer Aided Social Epistemology," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-10.
  • Handle: RePEc:jas:jasssj:2005-45-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/9/3/10/10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Gérard Weisbuch & Guillaume Deffuant & Frederic Amblard & Jean Pierre Nadal, 2001. "Interacting Agents and Continuous Opinions Dynamics," Working Papers 01-11-072, Santa Fe Institute.
    4. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
    5. Rainer Hegselmann & Ulrich Krause, 2005. "Opinion Dynamics Driven by Various Ways of Averaging," Computational Economics, Springer;Society for Computational Economics, vol. 25(4), pages 381-405, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin JS. Zollman, 2012. "Social network structure and the achievement of consensus," Politics, Philosophy & Economics, , vol. 11(1), pages 26-44, February.
    2. Edoardo Baccini & Zoé Christoff & Stephan Hartmann & Rineke Verbrugge, 2023. "The Wisdom of the Small Crowd: Myside Bias and Group Discussion," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-7.
    3. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Rainer Hegselmann & Stefan König & Sascha Kurz & Christoph Niemann & Jörg Rambau, 2015. "Optimal Opinion Control: The Campaign Problem," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(3), pages 1-18.
    5. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    6. Christoph Merdes, 2017. "Growing Unpopular Norms," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(3), pages 1-5.
    7. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    8. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    2. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    3. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    4. Blanco, Iván, 2005. "The silence that precedes hypocrisy: a formal model of the spiral of silence theory," MPRA Paper 45452, University Library of Munich, Germany.
    5. Diemo Urbig & Jan Lorenz & Heiko Herzberg, 2008. "Opinion Dynamics: the Effect of the Number of Peers Met at Once," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-4.
    6. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    7. Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
    8. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    9. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    11. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    12. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    14. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    15. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    16. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
    17. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    18. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    19. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    20. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2005-45-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.