IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v563y2021ics0378437120307846.html
   My bibliography  Save this article

Opinion dynamics of social learning with a conflicting source

Author

Listed:
  • Glass, Catherine A.
  • Glass, David H.

Abstract

The way in which agents are influenced by the truth and/or a conflicting source can have a significant effect on the extent to which social learning is successful. We investigate these influences via several variations of the Hegselmann–Krause model of opinion dynamics. First, we compare two ways of modelling the influence of truth in the absence of a conflicting source and find that in a model where access to the truth is more restricted, increasing the proportion of truth seekers in the society has little effect on convergence to the truth. Second, we investigate the same models of truth in the presence of a conflicting source, which could represent the opinions of a radical group, opinion leader or media source. The results show that a consensus on the truth can be reached in certain cases in both models, but also that in a wide range of cases both models give rise to the same partition of the society into truth seekers and non-truth seekers.

Suggested Citation

  • Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
  • Handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307846
    DOI: 10.1016/j.physa.2020.125480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120307846
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    3. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    4. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    5. Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
    6. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    7. Tanzhe Tang & Caspar G. Chorus, 2019. "Learning Opinions by Observing Actions: Simulation of Opinion Dynamics Using an Action-Opinion Inference Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(3), pages 1-2.
    8. Krzysztof Malarz, 2006. "Truth Seekers In Opinion Dynamics Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 17(10), pages 1521-1524.
    9. Rainer Hegselmann & Ulrich Krause, 2006. "Truth and Cognitive Division of Labour: First Steps Towards a Computer Aided Social Epistemology," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-10.
    10. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    11. Pooya Molavi & Alireza Tahbaz‐Salehi & Ali Jadbabaie, 2018. "A Theory of Non‐Bayesian Social Learning," Econometrica, Econometric Society, vol. 86(2), pages 445-490, March.
    12. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    13. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    14. Yan Liu & Lipo Mo, 2018. "Noise-Induced Truth Seeking of Heterogeneous Hegselmann-Krause Opinion Dynamics," Advances in Mathematical Physics, Hindawi, vol. 2018, pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Han & Tu, Lilan & Wang, Xianjia, 2024. "The influence of emotional tendency on the dissemination and evolution of opinions in two-layer social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    2. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    3. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    4. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    5. Fernandes, Marcos R., 2023. "Confirmation bias in social networks," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 59-76.
    6. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    7. Fang, Aili, 2021. "The influence of communication structure on opinion dynamics in social networks with multiple true states," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    8. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    9. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    10. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    11. Ionel Popescu & Tushar Vaidya, 2019. "Averaging plus Learning Models and Their Asymptotics," Papers 1904.08131, arXiv.org, revised Jul 2023.
    12. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.
    13. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    14. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.
    15. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    16. Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    17. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    18. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    19. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    20. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.