IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp549-559.html
   My bibliography  Save this article

Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion

Author

Listed:
  • Si, Xia-Meng
  • Wang, Wen-Dong
  • Ma, Yan

Abstract

The degree of sentiment is the key factor for internet users in determining their propagating behaviors, i.e. whether participating in a discussion and whether withdrawing from a discussion. For this end, we introduce two sentiment-based propagation thresholds (i.e. infected threshold and refractory threshold) and propose an interacting model based on the Bayesian updating rules. Our model describe the phenomena that few internet users change their decisions and that someone has drop out of discussion about the topic when some others are just aware of it. Numerical simulations show that, large infected threshold restrains information diffusion but favors the lessening of extremism, while large refractory threshold facilitates decision interaction but promotes the extremism. Making netizens calm down and propagate information sanely can restrain the prevailing of extremism about rumors.

Suggested Citation

  • Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:549-559
    DOI: 10.1016/j.physa.2015.12.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711600042X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.R. Martins, André, 2014. "Discrete opinion models as a limit case of the CODA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 352-357.
    2. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    3. Xiameng Si & Yun Liu & Zhenjiang Zhang, 2009. "Opinion Dynamics In Populations With Implicit Community Structure," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(12), pages 2013-2026.
    4. Nino Boccara, 2008. "Models Of Opinion Formation: Influence Of Opinion Leaders," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 93-109.
    5. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    6. Si, Xia-Meng & Liu, Yun & Xiong, Fei & Zhang, Yan-Chao & Ding, Fei & Cheng, Hui, 2010. "Effects of selective attention on continuous opinions and discrete decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3711-3719.
    7. Reia, Sandro M. & Neves, Ubiraci P.C., 2015. "Activity of a social dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 36-43.
    8. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    9. Yun Liu & Xia-Meng Si & Yan-Chao Zhang, 2012. "Comparing Effects Of Cluster-Coupled Patterns On Opinion Dynamics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 23(07), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si, Xia-Meng & Wang, Wen-Dong & Zhai, Chun-Qing & Ma, Yan, 2017. "A topic evolution model with sentiment and selective attention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 480-491.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Xia-Meng & Wang, Wen-Dong & Zhai, Chun-Qing & Ma, Yan, 2017. "A topic evolution model with sentiment and selective attention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 480-491.
    2. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    3. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    4. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    5. Si, Xia-Meng & Liu, Yun & Xiong, Fei & Zhang, Yan-Chao & Ding, Fei & Cheng, Hui, 2010. "Effects of selective attention on continuous opinions and discrete decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3711-3719.
    6. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    7. Daniel Röchert & Manuel Cargnino & German Neubaum, 2022. "Two sides of the same leader: an agent-based model to analyze the effect of ambivalent opinion leaders in social networks," Journal of Computational Social Science, Springer, vol. 5(2), pages 1159-1205, November.
    8. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    9. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    11. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    13. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    14. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    15. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    16. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    17. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    18. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    19. Wang, Chaoqian, 2021. "Opinion dynamics with bilateral propaganda and unilateral information blockade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    20. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:549-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.