IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126090.html
   My bibliography  Save this article

Competing for Attention in Social Media under Information Overload Conditions

Author

Listed:
  • Ling Feng
  • Yanqing Hu
  • Baowen Li
  • H Eugene Stanley
  • Shlomo Havlin
  • Lidia A Braunstein

Abstract

Modern social media are becoming overloaded with information because of the rapidly-expanding number of information feeds. We analyze the user-generated content in Sina Weibo, and find evidence that the spread of popular messages often follow a mechanism that differs from the spread of disease, in contrast to common belief. In this mechanism, an individual with more friends needs more repeated exposures to spread further the information. Moreover, our data suggest that for certain messages the chance of an individual to share the message is proportional to the fraction of its neighbours who shared it with him/her, which is a result of competition for attention. We model this process using a fractional susceptible infected recovered (FSIR) model, where the infection probability of a node is proportional to its fraction of infected neighbors. Our findings have dramatic implications for information contagion. For example, using the FSIR model we find that real-world social networks have a finite epidemic threshold in contrast to the zero threshold in disease epidemic models. This means that when individuals are overloaded with excess information feeds, the information either reaches out the population if it is above the critical epidemic threshold, or it would never be well received.

Suggested Citation

  • Ling Feng & Yanqing Hu & Baowen Li & H Eugene Stanley & Shlomo Havlin & Lidia A Braunstein, 2015. "Competing for Attention in Social Media under Information Overload Conditions," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0126090
    DOI: 10.1371/journal.pone.0126090
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126090
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126090&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    2. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    3. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    3. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    4. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    5. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    7. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    8. Wang, Chaoqian, 2021. "Opinion dynamics with bilateral propaganda and unilateral information blockade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    10. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    11. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    12. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    13. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    14. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    15. Yaofeng Zhang & Renbin Xiao, 2015. "Modeling and Simulation of Polarization in Internet Group Opinions Based on Cellular Automata," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-15, August.
    16. Dong Jiang & Qionglin Dai & Haihong Li & Junzhong Yang, 2024. "Opinion dynamics based on social learning theory," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(12), pages 1-9, December.
    17. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Zhu, Jiefan & Yao, Yiping & Tang, Wenjie & Zhang, Haoming, 2022. "An agent-based model of opinion dynamics with attitude-hiding behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    20. Hu, Haibo & Chen, Wenhao & Hu, Yixuan, 2024. "Opinion dynamics in social networks under the influence of mass media," Applied Mathematics and Computation, Elsevier, vol. 482(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.