IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v54y2020i2d10.1007_s11135-019-00909-2.html
   My bibliography  Save this article

Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics

Author

Listed:
  • Francisco J. León-Medina

    (Universitat de Girona)

  • Jordi Tena-Sánchez

    (Universitat Autònoma de Barcelona)

  • Francisco J. Miguel

    (Universitat Autònoma de Barcelona)

Abstract

In the vast and rich literature on opinion dynamics, the role of preference falsification has generally been dismissed. Following the lead of Timur Kuran, in this paper we present one of the first multi-agent models that explores how opinion dynamics can be affected by the possible divorce between private and public opinions. It is also the first attempt to explore the role of social hierarchies in opinion dynamics conditioned by preference falsification. Our model formalizes heterogeneous evolving agents guided by a cognitively feasible set of heuristics and embedded in a social-rank-dependent structure of interactions. In social-rank-heterophilic encounters where people experience a high pressure of face-to-face interactions, unanimous support for the high social-rank preferred option emerges, while in any other scenario this option gathers majority but not unanimous support. Preference falsification has a crucial role in the emergence of unanimity, but it also creates the conditions for further private opinion actualizations that end up generating a self-sustained and sincere unanimity. When social-rank-homophilic encounters are the rule, or when group dynamics are irrelevant for opinion expression, agents never find incentives to falsify their opinions, therefore generating a social situation that resembles the general idea behind the ethnographic work of James C. Scott: true opinion expression in daily social-rank-homophilic encounters and a persistent opinion falsification in dissimilar social-rank interactions.

Suggested Citation

  • Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
  • Handle: RePEc:spr:qualqt:v:54:y:2020:i:2:d:10.1007_s11135-019-00909-2
    DOI: 10.1007/s11135-019-00909-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-019-00909-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-019-00909-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takasumi Kurahashi-Nakamura & Michael Mäs & Jan Lorenz, 2016. "Robust Clustering in Generalized Bounded Confidence Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-7.
    2. Juan Carlos González-Avella & Mario G. Cosenza & Konstantin Klemm & Víctor M. Eguíluz & Maxi San Miguel, 2007. "Information Feedback and Mass Media Effects in Cultural Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-9.
    3. Bernheim, B Douglas, 1994. "A Theory of Conformity," Journal of Political Economy, University of Chicago Press, vol. 102(5), pages 841-877, October.
    4. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    5. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    6. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    7. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    8. Dietrich Stauffer & Adriano Sousa & Christian Schulze, 2004. "Discretized Opinion Dynamics of the Deffaunt Model on Scale-Free Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(3), pages 1-7.
    9. Rubin, Jared, 2014. "Centralized institutions and cascades," Journal of Comparative Economics, Elsevier, vol. 42(2), pages 340-357.
    10. Timur Kuran, 1987. "Chameleon voters and public choice," Public Choice, Springer, vol. 53(1), pages 53-78, January.
    11. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    12. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    13. Kuran, Timur, 1987. "Preference Falsification, Policy Continuity and Collective Conservatism," Economic Journal, Royal Economic Society, vol. 97(387), pages 642-665, September.
    14. Peter Duggins, 2017. "A Psychologically-Motivated Model of Opinion Change with Applications to American Politics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-13.
    15. Santo Fortunato, 2004. "UNIVERSALITY OF THE THRESHOLD FOR COMPLETE CONSENSUS FOR THE OPINION DYNAMICS OF DEFFUANTet al," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(09), pages 1301-1307.
    16. Daniel G. Arce M. & Todd Sandler, 2003. "An Evolutionary Game Approach to Fundamentalism and Conflict," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 159(1), pages 132-154, March.
    17. Katarzyna Sznajd-Weron, 2005. "Sznajd model and its applications," HSC Research Reports HSC/05/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    18. Floriana Gargiulo & Yerali Gandica, 2017. "The Role of Homophily in the Emergence of Opinion Controversies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(3), pages 1-8.
    19. Laguna, M.F. & Risau Gusman, S. & Abramson, G. & Gonçalves, S. & Iglesias, J.R., 2005. "The dynamics of opinion in hierarchical organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 580-592.
    20. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    21. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    22. Gérard Weisbuch & Guillaume Deffuant & Frederic Amblard & Jean Pierre Nadal, 2001. "Interacting Agents and Continuous Opinions Dynamics," Working Papers 01-11-072, Santa Fe Institute.
    23. Mohammad Afshar & Masoud Asadpour, 2010. "Opinion Formation by Informed Agents," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(4), pages 1-5.
    24. Juan Carlos González-Avella & Mario G Cosenza & Maxi San Miguel, 2012. "A Model for Cross-Cultural Reciprocal Interactions through Mass Media," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    25. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Peng-Bi, 2023. "Exploring the foundation of social diversity and coherence with a novel attraction–repulsion model framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    3. Ding, Fei & Liu, Yun & Shen, Bo & Si, Xia-Meng, 2010. "An evolutionary game theory model of binary opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1745-1752.
    4. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    5. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    6. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    7. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    9. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    10. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    11. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    12. Markus Brede, 2019. "How Does Active Participation Affect Consensus: Adaptive Network Model of Opinion Dynamics and Influence Maximizing Rewiring," Complexity, Hindawi, vol. 2019, pages 1-16, June.
    13. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    14. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    15. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    16. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    17. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    18. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    19. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    20. Bartłomiej Nowak & Katarzyna Sznajd-Weron, 2019. "Homogeneous Symmetrical Threshold Model with Nonconformity: Independence versus Anticonformity," Complexity, Hindawi, vol. 2019, pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:54:y:2020:i:2:d:10.1007_s11135-019-00909-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.