IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i20p5206-5217.html
   My bibliography  Save this article

Opinion dynamics in networked command and control organizations

Author

Listed:
  • Song, Xiao
  • Zhang, Shaoyun
  • Qian, Lidong

Abstract

An opinion dynamics model for a Command and Control (C2) organization is essential for simulating combat system effectiveness. However, few studies have addressed opinion evolution in C2 simulation. With the goal of overcoming this research gap, this paper proposes an opinion exchange model, which is illustrated through a practical example of an Armored Division network. The model is divided into homogeneous and heterogeneous aspects: the former is mainly characterized by communication rules and types, while the latter is extended with the influence of multi-level opinion leaders. After carrying out the simulation of the two main models, the results show that the opinion evolution of the hierarchical leveled C2 organization with descending influence is much more complex and unpredictable than that of social networks.

Suggested Citation

  • Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:20:p:5206-5217
    DOI: 10.1016/j.physa.2013.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113005268
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    2. Cho, Youngsang & Hwang, Junseok & Lee, Daeho, 2012. "Identification of effective opinion leaders in the diffusion of technological innovation: A social network approach," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 97-106.
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    5. Robert Axelrod, 1997. "The Dissemination of Culture," Journal of Conflict Resolution, Peace Science Society (International), vol. 41(2), pages 203-226, April.
    6. Amblard, Frédéric & Deffuant, Guillaume, 2004. "The role of network topology on extremism propagation with the relative agreement opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 725-738.
    7. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    8. Galam, Serge, 2000. "Real space renormalization group and totalitarian paradox of majority rule voting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 66-76.
    9. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    10. Guillaume Deffuant, 2006. "Comparing Extremism Propagation Patterns in Continuous Opinion Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-8.
    11. Galam, Serge, 2003. "Modelling rumors: the no plane Pentagon French hoax case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 571-580.
    12. Katarzyna Sznajd-Weron, 2005. "Sznajd model and its applications," HSC Research Reports HSC/05/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiao & Ma, Liang & Ma, Yaofei & Yang, Chen & Ji, Hang, 2016. "Selfishness- and Selflessness-based models of pedestrian room evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 455-466.
    2. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    3. Song, Xiao & Sun, Jinghan & Xie, Hongnan & Li, Qiyuan & Wang, Zilie & Han, Daolin, 2018. "Characteristic time based social force model improvement and exit assignment strategy for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 530-548.
    4. Song, Xiao & Zhang, Zenghui & Peng, Gongzhuang & Shi, Guoqiang, 2017. "Effect of authority figures for pedestrian evacuation at metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 599-612.
    5. Cullen, Andrew C. & Alpcan, Tansu & Kalloniatis, Alexander C., 2022. "Adversarial decisions on complex dynamical systems using game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    6. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    2. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    3. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    4. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    5. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    6. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    7. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    9. Song, Xiao & Shi, Wen & Ma, Yaofei & Yang, Chen, 2015. "Impact of informal networks on opinion dynamics in hierarchically formal organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 916-924.
    10. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    11. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    14. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    15. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    16. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    17. C.R. Martins, André, 2014. "Discrete opinion models as a limit case of the CODA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 352-357.
    18. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    19. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:20:p:5206-5217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.