IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0004.html
   My bibliography  Save this paper

Opinion evolution in closed community

Author

Listed:
  • Katarzyna Sznajd-Weron
  • Jozef Sznajd

Abstract

A simple Ising spin model which can describe a mechanism of making a decision in a closed community is proposed. It is shown via standard Monte Carlo simulations that very simple rules lead to rather complicated dynamics and to a power law in the decision time distribution. It is found that a closed community has to evolve either to a dictatorship or a stalemate state (inability to take any common decision). A common decision can be taken in a "democratic way" only by an open community.

Suggested Citation

  • Katarzyna Sznajd-Weron & Jozef Sznajd, 2000. "Opinion evolution in closed community," HSC Research Reports HSC/00/04, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc0004
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_00_04.pdf
    File Function: Final draft, 2000
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    2. Weron, Rafal, 2000. "Energy price risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 127-134.
    3. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    2. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    4. Weron, Rafal, 2000. "Energy price risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 127-134.
    5. Rypdal, Martin & Løvsletten, Ola, 2013. "Modeling electricity spot prices using mean-reverting multifractal processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 194-207.
    6. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
    7. Kracík, Jiří & Lavička, Hynek, 2016. "Fluctuation analysis of high frequency electric power load in the Czech Republic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 951-961.
    8. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    9. Rafal Weron, 2001. "Measuring long-range dependence in electricity prices," Papers cond-mat/0103621, arXiv.org.
    10. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    11. Marossy, Zita, 2011. "A villamos energia áralakulásának egy új modellje [A new model for price movement in electric power]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 253-274.
    12. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    13. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    14. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    15. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    16. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    17. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    18. Alvarez-Ramirez, Jose, 2002. "Characteristic time scales in the American dollar–Mexican peso exchange currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(1), pages 157-170.
    19. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    20. Keighley, Tim & Longden, Thomas & Mathew, Supriya & Trück, Stefan, 2014. "Quantifying Catastrophic and Climate Impacted Hazards Based on Local Expert Opinions," Climate Change and Sustainable Development 189171, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Keywords

    Opinion dynamics; Sznajd model; USDF model; Inflow dynamics;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.