IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v254y2015icp229-239.html
   My bibliography  Save this article

Influence maximization of informed agents in social networks

Author

Listed:
  • AskariSichani, Omid
  • Jalili, Mahdi

Abstract

Control of collective behavior is one of the most desirable goals in many applications related to social networks analysis and mining. In this work we propose a simple yet effective algorithm to control opinion formation in complex networks. We aim at finding the best spreaders whose connection to a reasonable number of informed agents results in the best performance. We consider an extended version of the bounded confidence model in which the uncertainty of each agent is adaptively controlled by the network. A number of informed agents with the desired opinion value is added to the network and create links with other agents such that large portion of the network follows their opinions. We propose to connect the informed agents to nodes with small in-degrees and high out-degree that are connected to high in-degree nodes. Our experimental results on both model and real social networks show superior performance of the proposed method over the state-of-the-art heuristic methods in the facet of opinion formation models.

Suggested Citation

  • AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
  • Handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:229-239
    DOI: 10.1016/j.amc.2014.12.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314018001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    2. Filippo Caruso & Paolo Castorina, 2005. "Opinion Dynamics And Decision Of Vote In Bipolar Political Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(09), pages 1473-1487.
    3. Gérard Weisbuch & Gérard Boudjema, 1999. "Dynamical Aspects in the Adoption of Agri-Environmental Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 11-36.
    4. Follmer, Hans, 1974. "Random economies with many interacting agents," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 51-62, March.
    5. Guillaume Deffuant, 2006. "Comparing Extremism Propagation Patterns in Continuous Opinion Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-8.
    6. Dietrich Stauffer, 2002. "The Sznajd Model Of Consensus Building With Limited Persuasion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 315-317.
    7. Huang, Gan & Cao, Jinde & Wang, Guanjun & Qu, Yuzhong, 2008. "The strength of the minority," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4665-4672.
    8. repec:sae:jocore:v:55:y:2011:i:6:p:970-955 is not listed on IDEAS
    9. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    10. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    11. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    12. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    13. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    14. Mohammad Afshar & Masoud Asadpour, 2010. "Opinion Formation by Informed Agents," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(4), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Yudong & Liu, Sanyang & Bai, Yiguang, 2021. "A probability-driven structure-aware algorithm for influence maximization under independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Yan, Fuhan & Li, Zhaofeng & Jiang, Yichuan, 2016. "Controllable uncertain opinion diffusion under confidence bound and unpredicted diffusion probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 85-100.
    4. Wang, Shaoli & Rong, Libin & Wu, Jianhong, 2016. "Bistability and multistability in opinion dynamics models," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 388-395.
    5. Fan, Kangqi & Pedrycz, Witold, 2017. "Evolution of public opinions in closed societies influenced by broadcast media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 53-66.
    6. Xu, Yuxin & Gao, Fei, 2024. "A novel higher-order Deffuant–Weisbuch networks model incorporating the Susceptible Infected Recovered framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    8. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    9. He, Qiang & Wang, Xingwei & Lei, Zhencheng & Huang, Min & Cai, Yuliang & Ma, Lianbo, 2019. "TIFIM: A Two-stage Iterative Framework for Influence Maximization in Social Networks," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 338-352.
    10. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    11. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Ullah, Farman & Lee, Sungchang, 2017. "Identification of influential nodes based on temporal-aware modeling of multi-hop neighbor interactions for influence spread maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 968-985.
    13. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    2. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    3. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    4. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    5. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    6. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    7. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. Melatagia Yonta, Paulin & Ndoundam, René, 2009. "Opinion dynamics using majority functions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 223-244, March.
    9. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    10. Juliette Rouchier & Emily Tanimura, 2012. "When overconfident agents slow down collective learning," Post-Print hal-00623966, HAL.
    11. Balankin, Alexander S. & Martínez Cruz, Miguel Ángel & Martínez, Alfredo Trejo, 2011. "Effect of initial concentration and spatial heterogeneity of active agent distribution on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3876-3887.
    12. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    13. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    17. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    18. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    19. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    20. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:229-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.