IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp558-565.html
   My bibliography  Save this article

Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence

Author

Listed:
  • Fu, Guiyuan
  • Zhang, Weidong
  • Li, Zhijun

Abstract

Continuous opinion dynamics in a group-based population with heterogeneous bounded confidences is considered in this paper. A slightly modified Hegselmann–Krause model is proposed, and agents are classified into three categories: open-minded-, moderate-minded-, and closed-minded-agents, while the whole population is divided into three subgroups accordingly. We study how agents of each category and the population size can affect opinion dynamics. It is observed that the number of final opinion clusters is dominated by the closed-minded agents; open-minded agents cannot contribute to forming opinion consensus and the existence of open-minded agents may diversify the final opinions instead; for the fixed population size and proportion of closed-minded agents, the relative size of the largest final opinion cluster varies along concave-parabola-like curve as the proportion of open-minded agents increases, and there is a tipping point when the number of open-minded agents is almost equal to that of moderate-minded agents; for the fixed proportion of the three categories in the population, as the population size becomes larger, the number of final opinion clusters will reach a plateau. Some of the results are different from the previous studies.

Suggested Citation

  • Fu, Guiyuan & Zhang, Weidong & Li, Zhijun, 2015. "Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 558-565.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:558-565
    DOI: 10.1016/j.physa.2014.10.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008838
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Liang, Haili & Yang, Yiping & Wang, Xiaofan, 2013. "Opinion dynamics in networks with heterogeneous confidence and influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2248-2256.
    4. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    5. Lorenz, Jan, 2005. "A stabilization theorem for dynamics of continuous opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 217-223.
    6. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    7. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashari, Masoud & Akbarzadeh-T, Mohammad-R., 2020. "Controlling opinions in Deffuant model by reconfiguring the network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    2. Yin, Fulian & Tang, Xinyi & Liang, Tongyu & Kuang, Qinghua & Wang, Jinxia & Ma, Rui & Miao, Fang & Wu, Jianhong, 2024. "Coupled dynamics of information propagation and emotion influence: Emerging emotion clusters for public health emergency messages on the Chinese Sina Microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    4. Antonio Parravano & Ascensión Andina-Díaz & Miguel A Meléndez-Jiménez, 2016. "Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-23, October.
    5. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    6. Wang, Chaoqian, 2021. "Opinion dynamics with bilateral propaganda and unilateral information blockade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    7. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    9. Tinggui Chen & Qianqian Li & Jianjun Yang & Guodong Cong & Gongfa Li, 2019. "Modeling of the Public Opinion Polarization Process with the Considerations of Individual Heterogeneity and Dynamic Conformity," Mathematics, MDPI, vol. 7(10), pages 1-33, October.
    10. Yang, Qing & Zou, Xingqi & Ye, Yunting & Yao, Tao, 2022. "Evaluating the criticality of the product development project portfolio network from the perspective of risk propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    12. Xi Chen & Xiao Zhang & Yong Xie & Wei Li, 2017. "Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    13. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    14. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    16. Si, Xia-Meng & Wang, Wen-Dong & Zhai, Chun-Qing & Ma, Yan, 2017. "A topic evolution model with sentiment and selective attention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 480-491.
    17. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    2. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Wang, Huanjing & Shang, Lihui, 2015. "Opinion dynamics in networks with common-neighbors-based connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 180-186.
    5. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    6. Song, Xiao & Shi, Wen & Tan, Gary & Ma, Yaofei, 2015. "Multi-level tolerance opinion dynamics in military command and control networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 322-332.
    7. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    8. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    9. Christos Mavridis & Nikolas Tsakas, 2021. "Social Capital, Communication Channels and Opinion Formation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 635-678, May.
    10. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    11. Rainer Hegselmann & Stefan König & Sascha Kurz & Christoph Niemann & Jörg Rambau, 2015. "Optimal Opinion Control: The Campaign Problem," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(3), pages 1-18.
    12. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    13. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    14. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    15. Song, Xiao & Zhang, Shaoyun & Qian, Lidong, 2013. "Opinion dynamics in networked command and control organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5206-5217.
    16. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    17. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    18. Ionel Popescu & Tushar Vaidya, 2019. "Averaging plus Learning Models and Their Asymptotics," Papers 1904.08131, arXiv.org, revised Jul 2023.
    19. Kurmyshev, Evguenii & Juárez, Héctor A. & González-Silva, Ricardo A., 2011. "Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2945-2955.
    20. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:558-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.