Author
Listed:
- Ali Goli
(Michael G. Foster School of Business, University of Washington, Seattle, Washington 98195)
- Amandeep Singh
(Michael G. Foster School of Business, University of Washington, Seattle, Washington 98195)
Abstract
We explore the viability of large language models (LLMs), specifically OpenAI’s GPT-3.5 and GPT-4, in emulating human survey respondents and eliciting preferences, with a focus on intertemporal choices. Leveraging the extensive literature on intertemporal discounting for benchmarking, we examine responses from LLMs across various languages and compare them with human responses, exploring preferences between smaller, sooner and larger, later rewards. Our findings reveal that both generative pretrained transformer (GPT) models demonstrate less patience than humans, with GPT-3.5 exhibiting a lexicographic preference for earlier rewards unlike human decision makers. Although GPT-4 does not display lexicographic preferences, its measured discount rates are still considerably larger than those found in humans. Interestingly, GPT models show greater patience in languages with weak future tense references, such as German and Mandarin, aligning with the existing literature that suggests a correlation between language structure and intertemporal preferences. We demonstrate how prompting GPT to explain its decisions, a procedure we term “chain-of-thought conjoint,” can mitigate, but does not eliminate, discrepancies between LLM and human responses. Although directly eliciting preferences using LLMs may yield misleading results, combining chain-of-thought conjoint with topic modeling aids in hypothesis generation, enabling researchers to explore the underpinnings of preferences. Chain-of-thought conjoint provides a structured framework for marketers to use LLMs to identify potential attributes or factors that can explain preference heterogeneity across different customers and contexts.
Suggested Citation
Ali Goli & Amandeep Singh, 2024.
"Frontiers: Can Large Language Models Capture Human Preferences?,"
Marketing Science, INFORMS, vol. 43(4), pages 709-722, July.
Handle:
RePEc:inm:ormksc:v:43:y:2024:i:4:p:709-722
DOI: 10.1287/mksc.2023.0306
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:43:y:2024:i:4:p:709-722. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.