IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v41y2024i3p468-488.html
   My bibliography  Save this article

Generative AI for scalable feedback to multimodal exercises

Author

Listed:
  • Jürgensmeier, Lukas
  • Skiera, Bernd

Abstract

Detailed feedback on exercises helps learners become proficient but is time-consuming for educators and, thus, hardly scalable. This manuscript evaluates how well Generative Artificial Intelligence (AI) provides automated feedback on complex multimodal exercises requiring coding, statistics, and economic reasoning. Besides providing this technology through an easily accessible web application, this article evaluates the technology’s performance by comparing the quantitative feedback (i.e., points achieved) from Generative AI models with human expert feedback for 4,349 solutions to marketing analytics exercises. The results show that automated feedback produced by Generative AI (GPT-4) provides almost unbiased evaluations while correlating highly with (r = 0.94) and deviating only 6 % from human evaluations. GPT-4 performs best among seven Generative AI models, albeit at the highest cost. Comparing the models’ performance with costs shows that GPT-4, Mistral Large, Claude 3 Opus, and Gemini 1.0 Pro dominate three other Generative AI models (Claude 3 Sonnet, GPT-3.5, and Gemini 1.5 Pro). Expert assessment of the qualitative feedback (i.e., the AI’s textual response) indicates that it is mostly correct, sufficient, and appropriate for learners. A survey of marketing analytics learners shows that they highly recommend the app and its Generative AI feedback. An advantage of the app is its subject-agnosticism—it does not require any subject- or exercise-specific training. Thus, it is immediately usable for new exercises in marketing analytics and other subjects.

Suggested Citation

  • Jürgensmeier, Lukas & Skiera, Bernd, 2024. "Generative AI for scalable feedback to multimodal exercises," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 468-488.
  • Handle: RePEc:eee:ijrema:v:41:y:2024:i:3:p:468-488
    DOI: 10.1016/j.ijresmar.2024.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811624000430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2024.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:41:y:2024:i:3:p:468-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.