IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1644-1660.html
   My bibliography  Save this article

Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness

Author

Listed:
  • Xuan Bi

    (Information and Decision Sciences, Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)

  • Gediminas Adomavicius

    (Information and Decision Sciences, Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)

  • William Li

    (Shanghai Advanced Institute of Finance, Shanghai Jiao Tong University, Shanghai 200120, China)

  • Annie Qu

    (Department of Statistics, University of California, Irvine, Irvine, California 92697)

Abstract

Because of the accessibility of big data collections from consumers, products, and stores, advanced sales forecasting capabilities have drawn great attention from many businesses, especially those in retail, because of the importance of forecasting in decision making. Improvement of forecasting accuracy, even by a small percentage, may have a substantial impact on companies’ production and financial planning, marketing strategies, inventory controls, and supply chain management. Specifically, our research goal is to forecast the sales of each product in each store in the near future. Motivated by tensor factorization methodologies for context-aware recommender systems, we propose a novel approach called the advanced temporal latent factor approach to sales forecasting, or ATLAS for short, which achieves accurate and individualized predictions for sales by building a single tensor factorization model across multiple stores and products. Our contribution is a combination of a tensor framework (to leverage information across stores and products), a new regularization function (to incorporate demand dynamics), and extrapolation of the tensor into future time periods using state-of-the-art statistical (seasonal autoregressive integrated moving-average models) and machine-learning (recurrent neural networks) models. The advantages of ATLAS are demonstrated on eight product category data sets collected by Information Resources, Inc., where we analyze a total of 165 million weekly sales transactions of over 15,560 products from more than 1,500 grocery stores. Summary of Contribution: Sales forecasting has been a task of long-standing importance. Accurate sales forecasting provides critical managerial implications for companies’ decision making and operations. Improvement of forecasting accuracy may have a substantial impact on companies’ production planning, marketing strategies, inventory controls, and supply chain management, among other things. This paper proposes a novel computational (machine-learning-based) approach to sales forecasting and thus is positioned directly at the intersection of computing and business/operations research.

Suggested Citation

  • Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1644-1660
    DOI: 10.1287/ijoc.2021.1147
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1147
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    2. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. Xuan Bi & Annie Qu & Junhui Wang & Xiaotong Shen, 2017. "A Group-Specific Recommender System," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1344-1353, July.
    5. Marshall Fisher & Santiago Gallino & Jun Li, 2018. "Competition-Based Dynamic Pricing in Online Retailing: A Methodology Validated with Field Experiments," Management Science, INFORMS, vol. 64(6), pages 2496-2514, June.
    6. Vishal Gaur & Saravanan Kesavan & Ananth Raman & Marshall L. Fisher, 2007. "Estimating Demand Uncertainty Using Judgmental Forecasts," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 480-491, April.
    7. Bart J. Bronnenberg & Michael W. Kruger & Carl F. Mela, 2008. "—The IRI Marketing Data Set," Marketing Science, INFORMS, vol. 27(4), pages 745-748, 07-08.
    8. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    9. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    10. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    11. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    12. Gediminas Adomavicius & Jesse C. Bockstedt & Shawn P. Curley & Jingjing Zhangc, 2018. "Effects of Online Recommendations on Consumers’ Willingness to Pay," Information Systems Research, INFORMS, vol. 29(1), pages 84-102, March.
    13. Nichols, Dr & Tsay, Jj, 1979. "Security Price Reactions To Long-Range Executive Earnings Forecasts," Journal of Accounting Research, Wiley Blackwell, vol. 17(1), pages 140-155.
    14. Jacoby, Jacob, 1984. "Perspectives on Information Overload," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(4), pages 432-435, March.
    15. Mirko Kremer & Brent Moritz & Enno Siemsen, 2011. "Demand Forecasting Behavior: System Neglect and Change Detection," Management Science, INFORMS, vol. 57(10), pages 1827-1843, October.
    16. Yicheng Song & Nachiketa Sahoo & Elie Ofek, 2019. "When and How to Diversify—A Multicategory Utility Model for Personalized Content Recommendation," Management Science, INFORMS, vol. 65(8), pages 3737-3757, August.
    17. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    18. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    19. Asher B. Curtis & Russell J. Lundholm & Sarah E. Mcvay, 2014. "Forecasting Sales: A Model and Some Evidence from the Retail Industry," Contemporary Accounting Research, John Wiley & Sons, vol. 31(2), pages 581-608, June.
    20. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    21. Raymond Yiu Keung Lau & Wenping Zhang & Wei Xu, 2018. "Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1775-1794, October.
    22. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
    23. Penman, Sh, 1980. "An Empirical-Investigation Of The Voluntary Disclosure Of Corporate-Earnings Forecasts," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 132-160.
    24. Alain Yee Loong Chong & Eugene Ch’ng & Martin J. Liu & Boying Li, 2017. "Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5142-5156, September.
    25. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2010. "Research Commentary --- Long Tails vs. Superstars: The Effect of Information Technology on Product Variety and Sales Concentration Patterns," Information Systems Research, INFORMS, vol. 21(4), pages 736-747, December.
    26. Mahajan, Vijay & Wind, Yoram, 1988. "New product forecasting models : Directions for research and implementation," International Journal of Forecasting, Elsevier, vol. 4(3), pages 341-358.
    27. Gediminas Adomavicius & Jesse C. Bockstedt & Shawn P. Curley & Jingjing Zhang, 2013. "Do Recommender Systems Manipulate Consumer Preferences? A Study of Anchoring Effects," Information Systems Research, INFORMS, vol. 24(4), pages 956-975, December.
    28. Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    2. Xuan Bi & Mochen Yang & Gediminas Adomavicius, 2024. "Consumer Acquisition for Recommender Systems: A Theoretical Framework and Empirical Evaluations," Information Systems Research, INFORMS, vol. 35(1), pages 339-362, March.
    3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    4. Tobias Kretschmer & Christian Peukert, 2020. "Video Killed the Radio Star? Online Music Videos and Recorded Music Sales," Information Systems Research, INFORMS, vol. 31(3), pages 776-800, September.
    5. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    6. Tom Fangyun Tan & Serguei Netessine & Lorin Hitt, 2017. "Is Tom Cruise Threatened? An Empirical Study of the Impact of Product Variety on Demand Concentration," Information Systems Research, INFORMS, vol. 28(3), pages 643-660, September.
    7. Qian Wang & Jijun Yu & Weiwei Deng, 2019. "An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations," Electronic Commerce Research, Springer, vol. 19(1), pages 59-79, March.
    8. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    9. Karl Taeuscher, 2019. "Uncertainty kills the long tail: demand concentration in peer-to-peer marketplaces," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 649-660, December.
    10. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    11. Guy Aridor & Duarte Goncalves & Daniel Kluver & Ruoyan Kong & Joseph Konstan, 2022. "The Economics of Recommender Systems: Evidence from a Field Experiment on MovieLens," Papers 2211.14219, arXiv.org.
    12. Molaie, Mir Majid & Lee, Wonjae, 2022. "Economic corollaries of personalized recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    13. Ruiqi Rich Zhu & Cheng He & Yu Jeffrey Hu, 2023. "The Effect of Product Recommendations on Online Investor Behaviors," Papers 2303.14263, arXiv.org, revised Nov 2023.
    14. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    15. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro, 2023. "Multichannel customer purchase behavior and long tail effects in the fashion goods market," Journal of Retailing, Elsevier, vol. 99(1), pages 46-65.
    16. Yinbo Feng & Ming Hu, 2017. "Blockbuster or Niche? Competitive Strategy under Network Effects," Working Papers 17-13, NET Institute.
    17. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    18. Yi, Sangyoon & Kim, Dongyeon & Ju, Jaehyeon, 2022. "Recommendation technologies and consumption diversity: An experimental study on product recommendations, consumer search, and sales diversity," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Konstantin Bauman & Alexander Tuzhilin, 2022. "Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes," Information Systems Research, INFORMS, vol. 33(1), pages 179-202, March.
    20. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1644-1660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.