IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i5p697-712.html
   My bibliography  Save this article

Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity

Author

Listed:
  • Daniel Fleder

    (Department of Operations and Information Management, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

  • Kartik Hosanagar

    (Department of Operations and Information Management, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

Abstract

This paper examines the effect of recommender systems on the diversity of sales. Two anecdotal views exist about such effects. Some believe recommenders help consumers discover new products and thus increase sales diversity. Others believe recommenders only reinforce the popularity of already-popular products. This paper seeks to reconcile these seemingly incompatible views. We explore the question in two ways. First, modeling recommender systems analytically allows us to explore their path-dependent effects. Second, turning to simulation, we increase the realism of our results by combining choice models with actual implementations of recommender systems. We arrive at three main results. First, some well-known recommenders can lead to a reduction in sales diversity. Because common recommenders (e.g., collaborative filters) recommend products based on sales and ratings, they cannot recommend products with limited historical data, even if they would be rated favorably. In turn, these recommenders can create a rich-get-richer effect for popular products and vice versa for unpopular ones. This bias toward popularity can prevent what may otherwise be better consumer-product matches. That diversity can decrease is surprising to consumers who express that recommendations have helped them discover new products. In line with this, result two shows that it is possible for individual-level diversity to increase but aggregate diversity to decrease. Recommenders can push each person to new products, but they often push users toward the same products. Third, we show how basic design choices affect the outcome, and thus managers can choose recommender designs that are more consistent with their sales goals and consumers' preferences.

Suggested Citation

  • Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:697-712
    DOI: 10.1287/mnsc.1080.0974
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1080.0974
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1080.0974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. James M. Lattin, 1987. "A Model of Balanced Choice Behavior," Marketing Science, INFORMS, vol. 6(1), pages 48-65.
    3. Judith Chevalier & Austan Goolsbee, 2003. "Measuring Prices and Price Competition Online: Amazon.com and BarnesandNoble.com," Quantitative Marketing and Economics (QME), Springer, vol. 1(2), pages 203-222, June.
    4. Sen, Amartya K, 1976. "Poverty: An Ordinal Approach to Measurement," Econometrica, Econometric Society, vol. 44(2), pages 219-231, March.
    5. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 1998. "Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 151-170, Summer.
    6. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    7. P. B. Seetharaman, 2004. "Modeling Multiple Sources of State Dependence in Random Utility Models: A Distributed Lag Approach," Marketing Science, INFORMS, vol. 23(2), pages 263-271, April.
    8. Terry Elrod, 1988. "Choice Map: Inferring a Product-Market Map from Panel Data," Marketing Science, INFORMS, vol. 7(1), pages 21-40.
    9. Marshall Van Alstyne & Erik Brynjolfsson, 2005. "Global Village or Cyber-Balkans? Modeling and Measuring the Integration of Electronic Communities," Management Science, INFORMS, vol. 51(6), pages 851-868, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José M. Labeaga & Mercedes Martos-Partal, 2007. "A Proposal to Distinguish State Dependence and Unobserved Heterogeneity in Binary Brand Choice Models," Working Papers 2007-02, FEDEA.
    2. Minki Kim & Pradeep Chintagunta, 2012. "Investigating brand preferences across social groups and consumption contexts," Quantitative Marketing and Economics (QME), Springer, vol. 10(3), pages 305-333, September.
    3. Zhang, Qin & Seetharaman, P.B. & Narasimhan, Chakravarthi, 2012. "The Indirect Impact of Price Deals on Households’ Purchase Decisions Through the Formation of Expected Future Prices," Journal of Retailing, Elsevier, vol. 88(1), pages 88-101.
    4. Pradeep Chintagunta & Jean-Pierre Dubé & Vishal Singh, 2003. "Balancing Profitability and Customer Welfare in a Supermarket Chain," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 111-147, March.
    5. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
    6. Karsten Hansen & Vishal Singh & Pradeep Chintagunta, 2006. "Understanding Store-Brand Purchase Behavior Across Categories," Marketing Science, INFORMS, vol. 25(1), pages 75-90, 01-02.
    7. Johanna Lena Dahlhausen & Cam Rungie & Jutta Roosen, 2018. "Value of labeling credence attributes—common structures and individual preferences," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 741-751, November.
    8. Rick L. Andrews & Andrew Ainslie & Imran S. Currim, 2008. "On the Recoverability of Choice Behaviors with Random Coefficients Choice Models in the Context of Limited Data and Unobserved Effects," Management Science, INFORMS, vol. 54(1), pages 83-99, January.
    9. Roy, Abhik, 1998. "An error components approach to segmentation and modelling brand choice dynamics," Journal of Economic Psychology, Elsevier, vol. 19(4), pages 463-484, August.
    10. Oliver J. Rutz & Garrett P. Sonnier, 2011. "The Evolution of Internal Market Structure," Marketing Science, INFORMS, vol. 30(2), pages 274-289, 03-04.
    11. Robert Donnelly & Francisco J.R. Ruiz & David Blei & Susan Athey, 2021. "Counterfactual inference for consumer choice across many product categories," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 369-407, December.
    12. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 5-64, March.
    13. Ó González-Benito & M P Martínez-Ruiz & A Molla-Descals, 2009. "Spatial mapping of price competition using logit-type market share models and store-level scanner-data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 52-62, January.
    14. González-Benito, Óscar, 2004. "Random effects choice models: seeking latent predisposition segments in the context of retail store format selection," Omega, Elsevier, vol. 32(2), pages 167-177, April.
    15. Sergi Jiménez-Martín & Antonio Ladrón de Guevara-Martínez, 2009. "A state-dependent model of hybrid behavior with rational consumers in the attribute space," Investigaciones Economicas, Fundación SEPI, vol. 33(3), pages 347-383, September.
    16. Rungie, Cam & Scarpa, Riccardo & Thiene, Mara, 2014. "The influence of individuals in forming collective household preferences for water quality," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 161-174.
    17. Dannewald, Till & Kreis, Henning & Silberhorn, Nadja, 2007. "Das hybride Wahlmodell und seine Anwendung im Marketing," SFB 649 Discussion Papers 2007-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Antonio Ladrón de Guevara, 2001. "A dynamic choice model of hybrid behavior in the attribute-space," Economics Working Papers 589, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    20. Karsten Hansen & Vishal Singh, 2009. "Market Structure Across Retail Formats," Marketing Science, INFORMS, vol. 28(4), pages 656-673, 07-08.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:697-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.