An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations
Author
Abstract
Suggested Citation
DOI: 10.1007/s10660-018-09325-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
- Abhijeet Ghoshal & Syam Menon & Sumit Sarkar, 2015. "Recommendations Using Information from Multiple Association Rules: A Probabilistic Approach," Information Systems Research, INFORMS, vol. 26(3), pages 532-551, September.
- Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
- Tucker, Catherine & Zhang, Juanjuan, 2007. "Long Tail or Steep Tail? A Field Investigation into How Online Popularity Information Affects the Distribution of Customer Choices," Working papers 39811, Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
- Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
- Mingxin Gan, 2014. "Walking on a User Similarity Network towards Personalized Recommendations," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
- Zahra Yusefi Hafshejani & Marjan Kaedi & Afsaneh Fatemi, 2018. "Improving sparsity and new user problems in collaborative filtering by clustering the personality factors," Electronic Commerce Research, Springer, vol. 18(4), pages 813-836, December.
- Been-Chian Chien & Chih-Hung Hu & Ming-Yi Ju, 2009. "Learning fuzzy concept hierarchy and measurement with node labeling," Information Systems Frontiers, Springer, vol. 11(5), pages 551-559, November.
- Yue Ma & Guoqing Chen & Qiang Wei, 2017. "Finding users preferences from large-scale online reviews for personalized recommendation," Electronic Commerce Research, Springer, vol. 17(1), pages 3-29, March.
- Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
- Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
- Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hans Weytjens & Enrico Lohmann & Martin Kleinsteuber, 2021. "Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet," Electronic Commerce Research, Springer, vol. 21(2), pages 371-391, June.
- Weiwei Deng & Jian Ma, 2022. "A knowledge graph approach for recommending patents to companies," Electronic Commerce Research, Springer, vol. 22(4), pages 1435-1466, December.
- Weiwei Deng, 2022. "Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network," Electronic Commerce Research, Springer, vol. 22(4), pages 1079-1105, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
- Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
- Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
- Yicheng Song & Nachiketa Sahoo & Elie Ofek, 2019. "When and How to Diversify—A Multicategory Utility Model for Personalized Content Recommendation," Management Science, INFORMS, vol. 65(8), pages 3737-3757, August.
- Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
- Budzinski, Oliver & Gänßle, Sophia & Lindstädt-Dreusicke, Nadine, 2021. "Data (r)evolution - The economics of algorithmic search and recommender services," Ilmenau Economics Discussion Papers 148, Ilmenau University of Technology, Institute of Economics.
- Anindya Ghose & Beibei Li & Siyuan Liu, 2019. "Mobile Targeting Using Customer Trajectory Patterns," Management Science, INFORMS, vol. 65(11), pages 5027-5049, November.
- Lusi Li & Jianqing Chen & Srinivasan Raghunathan, 2018. "Recommender System Rethink: Implications for an Electronic Marketplace with Competing Manufacturers," Information Systems Research, INFORMS, vol. 29(4), pages 1003-1023, December.
- Jingjing Zhang & Gediminas Adomavicius & Alok Gupta & Wolfgang Ketter, 2020. "Consumption and Performance: Understanding Longitudinal Dynamics of Recommender Systems via an Agent-Based Simulation Framework," Information Systems Research, INFORMS, vol. 31(1), pages 76-101, March.
- Ho, Edward & Kowatsch, Tobias & Ilic, Alexander, 2014. "The Sales Velocity Effect on Retailing," Journal of Interactive Marketing, Elsevier, vol. 28(4), pages 237-256.
- Andreas Hefti & Julia Lareida, 2021. "Competitive attention, Superstars and the Long Tail," ECON - Working Papers 383, Department of Economics - University of Zurich.
- Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
- Ethem Çanakoğlu & İbrahim Muter & Tevfik Aytekin, 2021. "Integrating Individual and Aggregate Diversity in Top- N Recommendation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 300-318, January.
- Weeds, Helen, 2012.
"Superstars and the long tail: The impact of technology on market structure in media industries,"
Information Economics and Policy, Elsevier, vol. 24(1), pages 60-68.
- Weeds, Helen, 2009. "Superstars and the Long Tail: The impact of technology on market structure in media industries," Economics Discussion Papers 3062, University of Essex, Department of Economics.
- Weeds, Helen, 2011. "Superstars and the Long Tail: The impact of technology on market structure in media industries," CEPR Discussion Papers 8719, C.E.P.R. Discussion Papers.
- Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
- Karl Taeuscher, 2019. "Uncertainty kills the long tail: demand concentration in peer-to-peer marketplaces," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 649-660, December.
- Joonhyuk Yang & Eric T. Anderson & Brett R. Gordon, 2021. "Digitization and Flexibility: Evidence from the South Korean Movie Market," Marketing Science, INFORMS, vol. 40(5), pages 821-843, September.
- Xitong Li & Jörn Grahl & Oliver Hinz, 2022.
"How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment,"
Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
- Xitong Li & Jörn Grahl & Oliver Hinz, 2021. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Working Papers hal-03869071, HAL.
- Andres Hervas-Drane, 2007. "Word of Mouth and Taste Matching: A Theory of the Long Tail," Working Papers 07-41, NET Institute, revised Jan 2009.
- Jianshan Sun & Jian Song & Yuanchun Jiang & Yezheng Liu & Jun Li, 2022. "Prick the filter bubble: A novel cross domain recommendation model with adaptive diversity regularization," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 101-121, March.
More about this item
Keywords
Electronic commerce; Recommender system; Product recommendation; Individual diversity; Aggregate diversity; Re-ranking approach;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:19:y:2019:i:1:d:10.1007_s10660-018-09325-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.