IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v178y2022ics004016252200018x.html
   My bibliography  Save this article

Recommendation technologies and consumption diversity: An experimental study on product recommendations, consumer search, and sales diversity

Author

Listed:
  • Yi, Sangyoon
  • Kim, Dongyeon
  • Ju, Jaehyeon

Abstract

Research has found two contrasting effects of recommendations on sales diversity: the long-tail effect (enabling niche products to be discovered and purchased) and the rich-get-richer effect (making popular products more popular). Given the mixed empirical findings, however, the literature lacks scholarly efforts to systematically examine when and why recommendations result in certain consequences. To fill this gap, we design a laboratory experiment where participants, divided into two groups with and without product recommendations, engage in online shopping for two types of products, search and experience goods. We find that with recommendations, more diverse products are attended, but less diverse ones are purchased. The sales diversity-reducing (rich-get-richer) effect of recommendations is more pronounced when shopping for the search goods, whereas the search scope-broadening (long-tail) effect of recommendations is more pronounced for the experience goods. We theorize that recommendations not only generate a popularity bias, but also serve a preference-matching role, and the former is more pronounced when shopping for the search goods while the later for the experience goods. Consequently, recommendations result in shorter search for the search goods, but longer search for the experience goods. Our analysis suggests recommendation scope and intensity as useful measures to understand the underlying mechanism. We conclude with discussions on the implications of our results, including potential social costs of recommendation technologies such as distortions or biases in market demand.

Suggested Citation

  • Yi, Sangyoon & Kim, Dongyeon & Ju, Jaehyeon, 2022. "Recommendation technologies and consumption diversity: An experimental study on product recommendations, consumer search, and sales diversity," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s004016252200018x
    DOI: 10.1016/j.techfore.2022.121486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016252200018X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rothschild, Michael, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 689-711, July/Aug..
    2. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    3. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    4. Benlian, Alexander & Titah, R. & Hess, Thomas, 2012. "Differential Effects of Provider and User Recommendations in e-Commerce Transactions: An Experimental Study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57946, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Benlian, Alexander & Titah, R. & Hess, Thomas, 2012. "Differential Effects of Provider and User Recommendations in e-Commerce Transactions: An Experimental Study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 59346, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Keller, Kevin Lane & Staelin, Richard, 1987. "Effects of Quality and Quantity of Information on Decision Effectiveness," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(2), pages 200-213, September.
    7. Hinz, Oliver & Eckert, Jochen & Skiera, Bernd, 2011. "Drivers of the Long Tail Phenomenon: An Empirical Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56544, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Klein, Lisa R., 1998. "Evaluating the Potential of Interactive Media through a New Lens: Search versus Experience Goods," Journal of Business Research, Elsevier, vol. 41(3), pages 195-203, March.
    9. Kristin Diehl & Gal Zauberman, 2005. "Searching Ordered Sets: Evaluations from Sequences under Search," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 31(4), pages 824-832, March.
    10. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    11. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2010. "Technology Usage and Online Sales: An Empirical Study," Management Science, INFORMS, vol. 56(11), pages 1930-1945, November.
    12. Nanda Kumar & Izak Benbasat, 2006. "Research Note: The Influence of Recommendations and Consumer Reviews on Evaluations of Websites," Information Systems Research, INFORMS, vol. 17(4), pages 425-439, December.
    13. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    14. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    15. Rex E. Pereira, 2001. "Influence of Query-Based Decision Aids on Consumer Decision Making in Electronic Commerce," Information Resources Management Journal (IRMJ), IGI Global, vol. 14(1), pages 31-48, January.
    16. Kartik Hosanagar & Daniel Fleder & Dokyun Lee & Andreas Buja, 2014. "Will the Global Village Fracture Into Tribes? Recommender Systems and Their Effects on Consumer Fragmentation," Management Science, INFORMS, vol. 60(4), pages 805-823, April.
    17. Michael Rothschild, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown: A Summary," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 1, pages 293-294, National Bureau of Economic Research, Inc.
    18. Benlian, Alexander & Titah, R. & Hess, Thomas, 2012. "Differential Effects of Provider and User Recommendations in e-Commerce Transactions: An Experimental Study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65605, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Hoch, Stephen J & Ha, Young-Won, 1986. "Consumer Learning: Advertising and the Ambiguity of Product Experience," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(2), pages 221-233, September.
    20. Gerald Häubl & Valerie Trifts, 2000. "Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids," Marketing Science, INFORMS, vol. 19(1), pages 4-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongwon Lee & Anandasivam Gopal & Sung-Hyuk Park, 2020. "Different but Equal? A Field Experiment on the Impact of Recommendation Systems on Mobile and Personal Computer Channels in Retail," Information Systems Research, INFORMS, vol. 31(3), pages 892-912, September.
    2. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    3. Tom Fangyun Tan & Serguei Netessine & Lorin Hitt, 2017. "Is Tom Cruise Threatened? An Empirical Study of the Impact of Product Variety on Demand Concentration," Information Systems Research, INFORMS, vol. 28(3), pages 643-660, September.
    4. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.
    5. Chen Liang & Zhan (Michael) Shi & T. S. Raghu, 2019. "The Spillover of Spotlight: Platform Recommendation in the Mobile App Market," Information Systems Research, INFORMS, vol. 30(4), pages 1296-1318, December.
    6. Konstantin Bauman & Alexander Tuzhilin, 2022. "Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes," Information Systems Research, INFORMS, vol. 33(1), pages 179-202, March.
    7. Qihua Liu & Xiaoyu Zhang & Liyi Zhang & Yang Zhao, 2019. "The interaction effects of information cascades, word of mouth and recommendation systems on online reading behavior: an empirical investigation," Electronic Commerce Research, Springer, vol. 19(3), pages 521-547, September.
    8. Zhang, Hong & Zhao, Ling & Gupta, Sumeet, 2018. "The role of online product recommendations on customer decision making and loyalty in social shopping communities," International Journal of Information Management, Elsevier, vol. 38(1), pages 150-166.
    9. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    10. Tobias Kretschmer & Christian Peukert, 2020. "Video Killed the Radio Star? Online Music Videos and Recorded Music Sales," Information Systems Research, INFORMS, vol. 31(3), pages 776-800, September.
    11. Joan Calzada & Nestor Duch-Brown & Ricard Gil, 2021. "Do search engines increase concentration in media markets?," UB School of Economics Working Papers 2021/415, University of Barcelona School of Economics.
    12. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
    13. Christian Matt & Thomas Hess, 2016. "Product fit uncertainty and its effects on vendor choice: an experimental study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(1), pages 83-93, February.
    14. Thomas Friedrich & Sebastian Schlauderer & Sven Overhage, 2021. "Some things are just better rich: how social commerce feature richness affects consumers’ buying intention via social factors," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 159-180, March.
    15. Hu, Xi & Huang, Qian & Zhong, Xuepan & Davison, Robert M. & Zhao, Dingtao, 2016. "The influence of peer characteristics and technical features of a social shopping website on a consumer’s purchase intention," International Journal of Information Management, Elsevier, vol. 36(6), pages 1218-1230.
    16. Fanjuan Shi & Jean-Luc Marini, 2014. "Do we need to believe Data/Tangible or Emotional/Intuition?," Post-Print halshs-01065283, HAL.
    17. David Schneider & Johannes Klumpe & Martin Adam & Alexander Benlian, 2020. "Nudging users into digital service solutions," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 863-881, December.
    18. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    19. Biswas, Dipayan, 2004. "Economics of information in the Web economy: Towards a new theory?," Journal of Business Research, Elsevier, vol. 57(7), pages 724-733, July.
    20. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s004016252200018x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.