IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v31y2020i3p892-912.html
   My bibliography  Save this article

Different but Equal? A Field Experiment on the Impact of Recommendation Systems on Mobile and Personal Computer Channels in Retail

Author

Listed:
  • Dongwon Lee

    (School of Business and Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Anandasivam Gopal

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

  • Sung-Hyuk Park

    (College of Business, Korea Advanced Institute of Science and Technology, Hoegi-ro, Dongdaemun-gu, Seoul 02455, Republic of Korea)

Abstract

The benefits of recommendation systems in online retail contexts have received much attention in prior work. Much of this work has been conducted in personal computer (PC)–based settings, although mobile devices are becoming increasingly central to the online shopping experience. It remains to be examined if the effects of recommendation systems in retail differ across these two channels, in terms of customer-level decision outcomes. In this paper, we examine these differences in some detail, studying how product views and sales attributed to a recommendation system are different across mobile and PC-based channels. Further, we examine how the effect of a recommendation system across channels influences sales diversity, an important outcome in the retail industry. We conduct our analysis using a randomized field experiment, conducted in partnership with an online retailing firm in South Korea, where the experimental treatment is access to a recommendation system. Our results show that the use of recommendation systems enhances customer-level outcomes, such as views and sales of recommended products, clickthrough rate, and conversion. More importantly, the marginal impacts of the recommendation system are significantly higher for mobile users, indicating that the higher search costs imposed through mobile devices are more effectively reduced through recommendation systems. With respect to sales diversity, we observe that although the mobile channel leads to more diverse sales, we see no interaction effects of the recommendation system and mobile use on sales diversity. These results provide boundary conditions for the efficacy of recommendation systems in retail contexts where online sales occur across both PC-based and mobile channels. We discuss the managerial implications of these results for online retailers and conclude with opportunities for further research.

Suggested Citation

  • Dongwon Lee & Anandasivam Gopal & Sung-Hyuk Park, 2020. "Different but Equal? A Field Experiment on the Impact of Recommendation Systems on Mobile and Personal Computer Channels in Retail," Information Systems Research, INFORMS, vol. 31(3), pages 892-912, September.
  • Handle: RePEc:inm:orisre:v:31:y:2020:i:3:p:892-912
    DOI: 10.1287/isre.2020.0922
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2020.0922
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2020.0922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anindya Ghose & Avi Goldfarb & Sang Pil Han, 2013. "How Is the Mobile Internet Different? Search Costs and Local Activities," Information Systems Research, INFORMS, vol. 24(3), pages 613-631, September.
    2. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    3. Hinz, Oliver & Eckert, Jochen & Skiera, Bernd, 2011. "Drivers of the Long Tail Phenomenon: An Empirical Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56544, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    6. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2010. "Technology Usage and Online Sales: An Empirical Study," Management Science, INFORMS, vol. 56(11), pages 1930-1945, November.
    7. Nanda Kumar & Izak Benbasat, 2006. "Research Note: The Influence of Recommendations and Consumer Reviews on Evaluations of Websites," Information Systems Research, INFORMS, vol. 17(4), pages 425-439, December.
    8. Liran Einav & Jonathan Levin & Igor Popov & Neel Sundaresan, 2014. "Growth, Adoption, and Use of Mobile E-Commerce," American Economic Review, American Economic Association, vol. 104(5), pages 489-494, May.
    9. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    10. Wang, Rebecca Jen-Hui & Malthouse, Edward C. & Krishnamurthi, Lakshman, 2015. "On the Go: How Mobile Shopping Affects Customer Purchase Behavior," Journal of Retailing, Elsevier, vol. 91(2), pages 217-234.
    11. Kartik Hosanagar & Daniel Fleder & Dokyun Lee & Andreas Buja, 2014. "Will the Global Village Fracture Into Tribes? Recommender Systems and Their Effects on Consumer Fragmentation," Management Science, INFORMS, vol. 60(4), pages 805-823, April.
    12. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    13. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    14. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    15. Lynch, John G, Jr & Srull, Thomas K, 1982. "Memory and Attentional Factors in Consumer Choice: Concepts and Research Methods," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(1), pages 18-37, June.
    16. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    17. Gerald Häubl & Valerie Trifts, 2000. "Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids," Marketing Science, INFORMS, vol. 19(1), pages 4-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
    2. Qin, Chang-Xiong & Liu, Zhao, 2022. "Reference price effect of partially similar online products in the consideration stage," Journal of Business Research, Elsevier, vol. 152(C), pages 70-81.
    3. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Sangyoon & Kim, Dongyeon & Ju, Jaehyeon, 2022. "Recommendation technologies and consumption diversity: An experimental study on product recommendations, consumer search, and sales diversity," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    2. Xitong Li & Jörn Grahl & Oliver Hinz, 2022. "How Do Recommender Systems Lead to Consumer Purchases? A Causal Mediation Analysis of a Field Experiment," Information Systems Research, INFORMS, vol. 33(2), pages 620-637, June.
    3. Tobias Kretschmer & Christian Peukert, 2020. "Video Killed the Radio Star? Online Music Videos and Recorded Music Sales," Information Systems Research, INFORMS, vol. 31(3), pages 776-800, September.
    4. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    5. Konstantin Bauman & Alexander Tuzhilin, 2022. "Know Thy Context: Parsing Contextual Information from User Reviews for Recommendation Purposes," Information Systems Research, INFORMS, vol. 33(1), pages 179-202, March.
    6. Tom Fangyun Tan & Serguei Netessine & Lorin Hitt, 2017. "Is Tom Cruise Threatened? An Empirical Study of the Impact of Product Variety on Demand Concentration," Information Systems Research, INFORMS, vol. 28(3), pages 643-660, September.
    7. Joan Calzada & Nestor Duch-Brown & Ricard Gil, 2021. "Do search engines increase concentration in media markets?," UB School of Economics Working Papers 2021/415, University of Barcelona School of Economics.
    8. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.
    9. Luis Aguiar Wicht, 2019. "Going Mobile: The Effects of Smartphone Usage on Internet Consumption," JRC Working Papers on Digital Economy 2019-07, Joint Research Centre.
    10. Erdem Dogukan Yilmaz & Ivana Naumovska & Milan Miric, 2023. "Does imitation increase or decrease demand for an original product? Understanding the opposing effects of discovery and substitution," Strategic Management Journal, Wiley Blackwell, vol. 44(3), pages 639-671, March.
    11. Hoskins, Jake D., 2020. "The evolving role of hit and niche products in brick-and-mortar retail category assortment planning: A large-scale empirical investigation of U.S. consumer packaged goods," Journal of Retailing and Consumer Services, Elsevier, vol. 57(C).
    12. Chen Liang & Zhan (Michael) Shi & T. S. Raghu, 2019. "The Spillover of Spotlight: Platform Recommendation in the Mobile App Market," Information Systems Research, INFORMS, vol. 30(4), pages 1296-1318, December.
    13. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    14. Czarnitzki, Dirk & Doherr, Thorsten & Hussinger, Katrin & Schliessler, Paula & Toole, Andrew A., 2016. "Knowledge Creates Markets: The influence of entrepreneurial support and patent rights on academic entrepreneurship," European Economic Review, Elsevier, vol. 86(C), pages 131-146.
    15. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    16. Cockx, Bart & Ghirelli, Corinna, 2016. "Scars of recessions in a rigid labor market," Labour Economics, Elsevier, vol. 41(C), pages 162-176.
    17. Marco Celentani & Miguel García-Posada & Fernando Gómez Pomar, 2022. "Fresh start policies and small business activity: evidence from a natural experiment," Working Papers 2210, Banco de España.
    18. Maiti, Abhradeep, 2015. "Effect of joint custody laws on children's future labor market outcomes," International Review of Law and Economics, Elsevier, vol. 43(C), pages 22-31.
    19. Jeff L. McMullin & Brian P. Miller & Brady J. Twedt, 2019. "Increased mandated disclosure frequency and price formation: evidence from the 8-K expansion regulation," Review of Accounting Studies, Springer, vol. 24(1), pages 1-33, March.
    20. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:31:y:2020:i:3:p:892-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.