IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p140-d88343.html
   My bibliography  Save this article

Potential of Vertical Hydroponic Agriculture in Mexico

Author

Listed:
  • José De Anda

    (Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C. Normalistas 800, Colinas de la Normal, Guadalajara, Jalisco C.P. 44270, Mexico)

  • Harvey Shear

    (Department of Geography, University of Toronto-Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada)

Abstract

In 2050, Mexico’s population will reach 150 million people, about 80% of whom will likely live in urban centers. This increase in population will necessitate increased food production in the country. The lands classified as drylands in Mexico occupy approximately 101.5 million hectares, or just over half the territory, limiting the potential for agricultural expansion. In addition to the problem of arid conditions in Mexico, there are conditions in other parts of the country related to low to very low water availability, resulting in pressure on the water resources in almost two-thirds of the country. Currently, agriculture uses 77% of the water withdrawn, primarily for food production. This sector contributes 12% of the total greenhouse gas emission (GHG) production in the country. Given the conditions of pressure on water and land resources in Mexico and the need to reduce the carbon footprint, vertical farming technology could offer the possibility for sustainable food production in the urban areas of the country in the coming years.

Suggested Citation

  • José De Anda & Harvey Shear, 2017. "Potential of Vertical Hydroponic Agriculture in Mexico," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:140-:d:88343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Torres-Lima & Beatriz Canabal-Cristiani & Gilberto Burela-Rueda, 1994. "Urban sustainable agriculture: The paradox of the chinampa system in Mexico City," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 11(1), pages 37-46, December.
    2. Kathrin Specht & Rosemarie Siebert & Ina Hartmann & Ulf Freisinger & Magdalena Sawicka & Armin Werner & Susanne Thomaier & Dietrich Henckel & Heike Walk & Axel Dierich, 2014. "Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(1), pages 33-51, March.
    3. Katherine Killebrew & Hendrik Wolff, 2010. "Environmental Impacts of Agricultural Technologies," Working Papers UWEC-2011-01, University of Washington, Department of Economics.
    4. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    5. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorinda Steenkamp & Elizelle Juanee Cilliers & Sarel Stephanus Cilliers & Louis Lategan, 2021. "Food for Thought: Addressing Urban Food Security Risks through Urban Agriculture," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    2. Artur Nemś & Magdalena Nemś & Klaudia Świder, 2018. "Analysis of the Possibilities of Using a Heat Pump for Greenhouse Heating in Polish Climatic Conditions—A Case Study," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    4. Mayuki Cabrera-González & Fernando Ramonet & Michael Harasek, 2022. "Development of a Model for the Implementation of the Circular Economy in Desert Coastal Regions," Land, MDPI, vol. 11(9), pages 1-17, September.
    5. Majid, Maliqa & Khan, Junaid N. & Ahmad Shah, Qazi Muneeb & Masoodi, Khalid Z. & Afroza, Baseerat & Parvaze, Saqib, 2021. "Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    2. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    3. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    4. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    5. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    8. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    9. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    10. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    11. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    12. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    13. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    14. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    15. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    16. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    17. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    18. Leena Erälinna & Barbara Szymoniuk, 2021. "Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland)," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    19. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    20. Montero, J.I. & Baeza, E. & Heuvelink, E. & Rieradevall, J. & Muñoz, P. & Ercilla, M. & Stanghellini, C., 2017. "Productivity of a building-integrated roof top greenhouse in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 158(C), pages 14-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:140-:d:88343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.