IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i11p157-d279356.html
   My bibliography  Save this article

Prospects for Agricultural Sustainable Intensification: A Review of Research

Author

Listed:
  • Hualin Xie

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Yingqian Huang

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Qianru Chen

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Yanwei Zhang

    (School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330032, China)

  • Qing Wu

    (Institute of Ecological Civilization, Jiangxi University of Finance and Economics, Nanchang 330013, China)

Abstract

In recent years, as a way to achieve higher agricultural output while reducing the negative impact of agricultural production on the environment, agricultural sustainable intensification has attracted worldwide attention. Under the framework of "connotation definition-measuring method-influencing factor-implementation path", this paper systematically sorts out the main research results in the field of agricultural sustainable intensification. The results show that: (1) The connotation of agricultural sustainable intensification has not been clearly defined. It is widely believed that sustainable intensification has the characteristics of increasing production and reducing environmental damage, and is widely used in agricultural, biological and environmental sciences; (2) The measurement methods and indicators of agricultural sustainable intensification are diverse, and the measurement cases are mainly distributed in Europe, Asia, Africa and America; (3) The influencing factors of agricultural sustainable intensification can be roughly divided into four aspects: socio-economic factors, farmers’ own characteristics and natural factors, among which population pressure is the potential driving force for agricultural sustainable intensification; (4) The most obvious feature of agricultural sustainable intensification is the reduction of the yield gap. The strategy of implementing agricultural sustainable intensification can be attributed to the effective use of inputs and the adoption of sustainable practices and technologies. Therefore, the implementation path can be summarized as enhancing the effectiveness of external inputs to the agricultural system and optimizing the practice and technology mix within the crop production system. Finally, this paper concludes that research on connotation definition, influencing mechanism, different regional models, incentive mechanism for farmers, impact evaluation and system design of agricultural sustainable intensification should be strengthened in future.

Suggested Citation

  • Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:11:p:157-:d:279356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/11/157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/11/157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaal, Fred & Oostendorp, Remco H., 2002. "Explaining a Miracle: Intensification and the Transition Towards Sustainable Small-scale Agriculture in Dryland Machakos and Kitui Districts, Kenya," World Development, Elsevier, vol. 30(7), pages 1271-1287, July.
    2. Phalan, Ben & Balmford, Andrew & Green, Rhys E. & Scharlemann, Jörn P.W., 2011. "Minimising the harm to biodiversity of producing more food globally," Food Policy, Elsevier, vol. 36(Supplemen), pages 62-71, January.
    3. Erenstein, Olaf, 2006. "Intensification or extensification? Factors affecting technology use in peri-urban lowlands along an agro-ecological gradient in West Africa," Agricultural Systems, Elsevier, vol. 90(1-3), pages 132-158, October.
    4. Kyalo Willy, Daniel & Muyanga, Milu & Jayne, Thomas, 2019. "Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis," Land Use Policy, Elsevier, vol. 81(C), pages 100-110.
    5. Phalan, Ben & Balmford, Andrew & Green, Rhys E. & Scharlemann, Jörn P.W., 2011. "Minimising the harm to biodiversity of producing more food globally," Food Policy, Elsevier, vol. 36(S1), pages 62-71.
    6. Bezlepkina, Irina & Reidsma, Pytrik & Sieber, Stefan & Helming, Katharina, 2011. "Integrated assessment of sustainability of agricultural systems and land use: Methods, tools and applications," Agricultural Systems, Elsevier, vol. 104(2), pages 105-109, February.
    7. Blumenstein, Benjamin & Siegmeier, Torsten & Selsam, Franziska & Möller, Detlev, 2018. "A case of sustainable intensification: Stochastic farm budget optimization considering internal economic benefits of biogas production in organic agriculture," Agricultural Systems, Elsevier, vol. 159(C), pages 78-92.
    8. Vorlaufer, Tobias & Falk, Thomas & Dufhues, Thomas & Kirk, Michael, 2017. "Payments for ecosystem services and agricultural intensification: Evidence from a choice experiment on deforestation in Zambia," Ecological Economics, Elsevier, vol. 141(C), pages 95-105.
    9. Ndiritu, S. Wagura & Kassie, Menale & Shiferaw, Bekele, 2014. "Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya," Food Policy, Elsevier, vol. 49(P1), pages 117-127.
    10. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    11. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    12. Snapp, Sieglinde S. & Grabowski, Philip & Chikowo, Regis & Smith, Alex & Anders, Erin & Sirrine, Dorothy & Chimonyo, Vimbayi & Bekunda, Mateete, 2018. "Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible?," Agricultural Systems, Elsevier, vol. 162(C), pages 77-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kibrom A. Abay & Lina Abdelfattah & Hoda El‐Enbaby & Mai Mahmoud & Clemens Breisinger, 2022. "Plot size and sustainable input intensification in smallholder irrigated agriculture: Evidence from Egypt," Agricultural Economics, International Association of Agricultural Economists, vol. 53(5), pages 792-810, September.
    2. Meng Wang & Qingchen Xu & Zemeng Fan & Xiaofang Sun, 2021. "The Imprint of Built-Up Land Expansion on Cropland Distribution and Productivity in Shandong Province," Land, MDPI, vol. 10(6), pages 1-12, June.
    3. Qianru Chen, 2022. "Analyzing Farmers’ Cultivated-Land-Abandonment Behavior: Integrating the Theory of Planned Behavior and a Structural Equation Model," Land, MDPI, vol. 11(10), pages 1-17, October.
    4. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    5. Rodica Chetroiu & Ana Elena Cișmileanu & Elena Cofas & Ionut Laurentiu Petre & Steliana Rodino & Vili Dragomir & Ancuța Marin & Petruța Antoneta Turek-Rahoveanu, 2022. "Assessment of the Relations for Determining the Profitability of Dairy Farms, A Premise of Their Economic Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    6. Tiangui Lv & Li Wang & Hualin Xie & Xinmin Zhang & Yanwei Zhang, 2021. "Exploring the Global Research Trends of Land Use Planning Based on a Bibliometric Analysis: Current Status and Future Prospects," Land, MDPI, vol. 10(3), pages 1-19, March.
    7. Zhiqiang Zhou & Wenyan Liu & Huilin Wang & Jingyu Yang, 2022. "The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation," IJERPH, MDPI, vol. 19(17), pages 1-19, August.
    8. Stavros Kalogiannidis & Christina-Ioanna Papadopoulou & Efstratios Loizou & Fotios Chatzitheodoridis, 2023. "Risk, Vulnerability, and Resilience in Agriculture and Their Impact on Sustainable Rural Economy Development: A Case Study of Greece," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
    9. Krishnendu Ray & Suman Mondal & Md. Jahangir Kabir & Sukamal Sarkar & Kalyan Roy & Koushik Brahmachari & Argha Ghosh & Manoj K. Nanda & Sanchayeeta Misra & Supriya Ghorui & Rupak Goswami & Mohammed Ma, 2023. "Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    10. Dorijan Radočaj & Mladen Jurišić & Irena Rapčan & Fran Domazetović & Rina Milošević & Ivan Plaščak, 2023. "An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia," Land, MDPI, vol. 12(5), pages 1-16, May.
    11. Đokić, Danilo & Matkovski, Bojan & Jeremić, Marija & Đurić, Ivan, 2022. "Land productivity and agri-environmental indicators: A case study of Western Balkans," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-13.
    12. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    13. Lu Cai & Chaoqing Chai & Bangbang Zhang & Feng Yang & Wei Wang & Chengdong Zhang, 2022. "The Theoretical Approach and Practice of Farmland Rights System Reform from Decentralization to Centralization Promoting Agricultural Modernization: Evidence from Yuyang District in Shaanxi, China," Land, MDPI, vol. 11(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luz Maria Castro & Baltazar Calvas & Thomas Knoke, 2015. "Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-23, March.
    2. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    3. Ana D. Maldonado & Darío Ramos-López & Pedro A. Aguilera, 2019. "The Role of Cultural Landscapes in the Delivery of Provisioning Ecosystem Services in Protected Areas," Sustainability, MDPI, vol. 11(9), pages 1-18, April.
    4. Loconto, Allison & Desquilbet, Marion & Moreau, Théo & Couvet, Denis & Dorin, Bruno, 2020. "The land sparing – land sharing controversy: Tracing the politics of knowledge," Land Use Policy, Elsevier, vol. 96(C).
    5. repec:idb:brikps:64718 is not listed on IDEAS
    6. Gardner, Toby A. & Ferreira, J. & Barlow, J. & Lees, A. C. & Parry, L. & Vieira, I. C. G. & Berenguer, E. & Abramovay, R. & Aleixo, A. & Andretti, C. & Aragao, L. E. O. C. & Araujo, I. & de Avila, W. , 2013. "A social and ecological assessment of tropical land uses at multiple scales: the Sustainable amazon network," LSE Research Online Documents on Economics 50120, London School of Economics and Political Science, LSE Library.
    7. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    8. Fischer, Joern & Abson, David J. & Butsic, Van & Chappell, M. Jahi & Ekroos, Johan & Hanspach, Jan & Kuemmerle, Tobias & Smith, Henrik G. & von Wehrden, Henrik, 2014. "Land sparing versus land sharing: Moving forward," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(3), pages 149-157.
    9. Desquilbet, Marion & Dorin, Bruno & Couvet, Denis, 2013. "Land sharing vs. land sparing for biodiversity: How agricultural markets make the difference," TSE Working Papers 13-435, Toulouse School of Economics (TSE), revised Oct 2015.
    10. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    11. Alan Matthews, 2012. "Greening the Cap: The Way Forward," QA - Rivista dell'Associazione Rossi-Doria, Associazione Rossi Doria, issue 4, December.
    12. João Pompeu & Luciana Soler & Jean Ometto, 2018. "Modelling Land Sharing and Land Sparing Relationship with Rural Population in the Cerrado," Land, MDPI, vol. 7(3), pages 1-19, July.
    13. Kihara, Job & Manda, Julius & Kimaro, Anthony & Swai, Elirehema & Mutungi, Christopher & Kinyua, Michael & Okori, Patrick & Fischer, Gundula & Kizito, Fred & Bekunda, Mateete, 2022. "Contributions of integrated soil fertility management (ISFM) to various sustainable intensification impact domains in Tanzania," Agricultural Systems, Elsevier, vol. 203(C).
    14. John E. Quinn & Amy Oden & James R. Brandle, 2013. "The Influence of Different Cover Types on American Robin Nest Success in Organic Agroecosystems," Sustainability, MDPI, vol. 5(8), pages 1-11, August.
    15. Marion Desquilbet & Bruno Dorin & Denis Couvet, 2016. "Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference [land-sharing/land-sparing, comment les marchés font la différence]," Post-Print hal-03948463, HAL.
    16. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    17. Amy Molotoks & Matthias Kuhnert & Terence P. Dawson & Pete Smith, 2017. "Global Hotspots of Conflict Risk between Food Security and Biodiversity Conservation," Land, MDPI, vol. 6(4), pages 1-15, October.
    18. Kubitza, Christoph & Krishna, Vijesh V. & Urban, Kira & Alamsyah, Zulkifli & Qaim, Matin, 2018. "Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia," Ecological Economics, Elsevier, vol. 147(C), pages 312-321.
    19. Yu, Wusheng & Clora, Francesco & Costa, Louis & Baudry, Gino, 2021. "Dietary Transitions As Climate Mitigation Measures in Europe: Implications of Supply-Side Responses and Trade Policy Regimes," 2021 Conference, August 17-31, 2021, Virtual 315912, International Association of Agricultural Economists.
    20. Kim, Jongwoo & Mason, Nicole M. & Snapp ,Sieglinde, 2017. "Does Sustainable Intensification of Maize Production Enhance Child Nutrition? Evidence from Rural Tanzania," Feed the Future Innovation Lab for Food Security Policy Research Papers 265406, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    21. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:11:p:157-:d:279356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.