IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v59y2011i1p401-425.html
   My bibliography  Save this article

Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model

Author

Listed:
  • E. Sujatha
  • Victor Rajamanickam

Abstract

This paper deals with the landslide susceptibility zonation of Tevankarai Ar sub-watershed using weighted similar choice fuzzy method in a GIS environment. There has been a rapid increase in landslide occurrences in the Kodaikkanal town and area surrounding the town specially in the settlements around the town and road links leading to and from the town. This necessitates a detailed study of slope instability problems in this area. It is observed that these incidences occur frequently during the monsoon and summer showers. Rainfall is identified as the prime triggering factor. Eleven physical factors that cause instability are identified as causative factors from the field investigations and landslide occurrences. Land use pattern, slope gradient, curvature and aspect, weathering index which are evaluated from the weathering ratios of different chemical constituents of the three major lithological variations, soil type, hydraulic conductivity of soil and soil thickness, geomorphology, drainage, and lineament have been utilized to prepare the spatial variation. A weighted similar choice fuzzy model which ranks a set of alternatives by identifying the similarity between the outcome of alternatives and outcome of ideal alternatives is used to rank the causative factors. Each causative factor is classified into sub-categories and rated based on their effect on stimulating the landslide event using qualitative judgment derived from field studies and landslide history. The prepared thematic maps of causative factors are integrated, utilizing the GIS software Arcmap. The outcome has projected the low, moderate, high, and very high landslide susceptibility zones. The high-hazard and very high-hazard areas fall in the northwestern part characterized by croplands and agricultural plantations, while the moderate hazard zones are seen in prominent settlements and low-hazard zones are observed in the sparse settlements and zones of less agricultural activity. The model is verified using the relative landslide density (R) index, and the susceptibility map is found to be consistent with the mapped landslide incidences. The results from this study illustrate that the use of weighted similar choice fuzzy method is suitable for landslide susceptibility mapping on regional scale in growing hill towns as Kodaikkanal town. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • E. Sujatha & Victor Rajamanickam, 2011. "Landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal taluk, India, using weighted similar choice fuzzy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 401-425, October.
  • Handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:401-425
    DOI: 10.1007/s11069-011-9763-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9763-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9763-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Núria Santacana & Baeza Baeza & Jordi Corominas & Ana De Paz & Jordi Marturiá, 2003. "A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 281-295, November.
    2. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    3. M. Ercanoglu & C. Gokceoglu & Th. Van Asch, 2004. "Landslide Susceptibility Zoning North of Yenice (NW Turkey) by Multivariate Statistical Techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    2. Qianqian Wang & Dongchuan Wang & Yong Huang & Zhiheng Wang & Lihui Zhang & Qiaozhen Guo & Wei Chen & Wengang Chen & Mengqin Sang, 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment," Sustainability, MDPI, vol. 7(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Sabatakakis & G. Koukis & E. Vassiliades & S. Lainas, 2013. "Landslide susceptibility zonation in Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 523-543, January.
    2. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    3. Rodeano Roslee & Alvyn Clancey Mickey & Norbert Simon & Mohd. Norazman Norhisham, 2017. "Landslide susceptibility analysis lsa using weighted overlay method wom along the genting sempah to bentong highway pahang," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 1(2), pages 13-19, September.
    4. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    6. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    7. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    8. Gang Chen & Xianju Li & Weitao Chen & Xinwen Cheng & Yujin Zhang & Shengwei Liu, 2014. "Extraction and application analysis of landslide influential factors based on LiDAR DEM: a case study in the Three Gorges area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 509-526, November.
    9. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    10. Jaydip Dey & Saurabh Sakhre & Ritesh Vijay & Hemant Bherwani & Rakesh Kumar, 2021. "Geospatial assessment of urban sprawl and landslide susceptibility around the Nainital lake, Uttarakhand, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3543-3561, March.
    11. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    12. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    13. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    14. Binh Thai Pham & Indra Prakash & Wei Chen & Hai-Bang Ly & Lanh Si Ho & Ebrahim Omidvar & Van Phong Tran & Dieu Tien Bui, 2019. "A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 11(22), pages 1-30, November.
    15. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    16. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    17. Nhat-Duc Hoang & Dieu Tien Bui, 2018. "Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1871-1887, July.
    18. A. Baral & S. M. Shahandashti, 2022. "Identifying critical combination of roadside slopes susceptible to rainfall-induced failures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1177-1198, September.
    19. Massimo Conforti & Pietro Aucelli & Gaetano Robustelli & Fabio Scarciglia, 2011. "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 881-898, March.
    20. Prafull Singh & Ankit Sharma & Ujjwal Sur & Praveen Kumar Rai, 2021. "Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5233-5250, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:59:y:2011:i:1:p:401-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.