IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i2d10.1007_s10898-021-01076-1.html
   My bibliography  Save this article

Adaptive seeding for profit maximization in social networks

Author

Listed:
  • Chuangen Gao

    (Qilu Technology University)

  • Shuyang Gu

    (Texas A&M University)

  • Jiguo Yu

    (Qilu Technology University)

  • Hai Du

    (Shaanxi Normal University)

  • Weili Wu

    (University of Texas at Dallas)

Abstract

Social networks are becoming important dissemination platforms, and a large body of works have been performed on viral marketing, but most are to maximize the benefits associated with the number of active nodes. In this paper, we study the benefits related to interactions among activated nodes. Furthermore, since the stochasticity caused by the dynamics of influence cascade in the social network, we propose the adaptive seeding strategy where seeds are selected one by one according to influence propagation situation of seeds already selected, and define the adaptive profit maximization problem. We analyze its complexity and prove it is not adaptive submodular. We find the upper and lower bounds which are adaptive submodular and design an adaptive sandwich policy based on the sandwich strategy which could gain a data dependent approximation solution. Through real data sets, we verify the effectiveness of our proposed algorithm.

Suggested Citation

  • Chuangen Gao & Shuyang Gu & Jiguo Yu & Hai Du & Weili Wu, 2022. "Adaptive seeding for profit maximization in social networks," Journal of Global Optimization, Springer, vol. 82(2), pages 413-432, February.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01076-1
    DOI: 10.1007/s10898-021-01076-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01076-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01076-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. L. Nemhauser & L. A. Wolsey, 1978. "Best Algorithms for Approximating the Maximum of a Submodular Set Function," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 177-188, August.
    2. Nemhauser, G.L. & Wolsey, L.A., 1978. "Best algorithms for approximating the maximum of a submodular set function," LIDAM Reprints CORE 343, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Ailian Wang & Weili Wu & Lei Cui, 2016. "On Bharathi–Kempe–Salek conjecture for influence maximization on arborescence," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1678-1684, May.
    4. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    5. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    2. Ivan Contreras & Elena Fernández, 2014. "Hub Location as the Minimization of a Supermodular Set Function," Operations Research, INFORMS, vol. 62(3), pages 557-570, June.
    3. Cheng Lu & Wenguo Yang & Ruiqi Yang & Suixiang Gao, 2022. "Maximizing a non-decreasing non-submodular function subject to various types of constraints," Journal of Global Optimization, Springer, vol. 83(4), pages 727-751, August.
    4. Suning Gong & Qingqin Nong & Jiazhu Fang & Ding-Zhu Du, 2024. "Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query Complexity," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 194-214, January.
    5. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    6. R. Garbe & K. D. Glazebrook, 1998. "Submodular Returns and Greedy Heuristics for Queueing Scheduling Problems," Operations Research, INFORMS, vol. 46(3), pages 336-346, June.
    7. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    8. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    9. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    10. Maxim Sviridenko & Jan Vondrák & Justin Ward, 2017. "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1197-1218, November.
    11. Niv Buchbinder & Moran Feldman & Roy Schwartz, 2017. "Comparing Apples and Oranges: Query Trade-off in Submodular Maximization," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 308-329, May.
    12. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    13. Sundarraj, R. P., 2002. "An optimization approach to plan for reusable software components," European Journal of Operational Research, Elsevier, vol. 142(1), pages 128-137, October.
    14. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    15. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    16. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.
    17. D. Santos-Peñate & R. Suárez-Vega & P. Dorta-González, 2007. "The Leader–Follower Location Model," Networks and Spatial Economics, Springer, vol. 7(1), pages 45-61, March.
    18. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
    19. Niv Buchbinder & Moran Feldman, 2019. "Constrained Submodular Maximization via a Nonsymmetric Technique," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 988-1005, August.
    20. Cheng Lu & Wenguo Yang, 2024. "Fast deterministic algorithms for non-submodular maximization with strong performance guarantees," Journal of Global Optimization, Springer, vol. 89(3), pages 777-801, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:2:d:10.1007_s10898-021-01076-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.