IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2941-d164520.html
   My bibliography  Save this article

Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model

Author

Listed:
  • Sangseom Jeong

    (School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea)

  • Azman Kassim

    (Department of Geotechnics and Transportation, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

  • Moonhyun Hong

    (School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea)

  • Nader Saadatkhah

    (Department of Civil Engineering, Faculty of Engineering, Islamic Azad University (IAU), Kerman Branch, Kerman 761, Iran)

Abstract

This study was conducted to estimate the susceptibility of landslides on a test site in Malaysia (Hulu Kelang area). A Geographic Information system (GIS)-based physical model named YS-Slope, which integrates a mechanistic infinite slope stability method and the geo-hydrological model was applied to calculate the safety factor of the test site. Input data, slopes, soil-depth, elevations, soil properties and plant covers were constructed as GIS datasets. The factor of safety of shallow landslides along the wetting front and deep-seated landslides at the bottom of the groundwater were estimated to compare with the analysis results of the existing model and actual landslides in 2008. According to the results of the study, shallow landslides mainly occurred in the central area which has many historical landslides, while deep-seated landslides were predominant in the east side of the study area. A ROC analysis was conducted and it is shown that the prediction result at the end of the northeast monsoon for shallow landslides showed relatively high accuracy compared with other predictions.

Suggested Citation

  • Sangseom Jeong & Azman Kassim & Moonhyun Hong & Nader Saadatkhah, 2018. "Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2941-:d:164520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangseom Jeong & Kwangwoo Lee & Junghwan Kim & Yongmin Kim, 2017. "Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    2. Yongmin Kim & Hyundo Park & Sangseom Jeong, 2017. "Settlement Behavior of Shallow Foundations in Unsaturated Soils under Rainfall," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    3. Min Lee & Kim Ng & Yuk Huang & Wei Li, 2014. "Rainfall-induced landslides in Hulu Kelang area, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 353-375, January.
    4. Qianqian Wang & Dongchuan Wang & Yong Huang & Zhiheng Wang & Lihui Zhang & Qiaozhen Guo & Wei Chen & Wengang Chen & Mengqin Sang, 2015. "Landslide Susceptibility Mapping Based on Selected Optimal Combination of Landslide Predisposing Factors in a Large Catchment," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    5. Suhua Zhou & Guangqi Chen & Ligang Fang & Yunwen Nie, 2016. "GIS-Based Integration of Subjective and Objective Weighting Methods for Regional Landslides Susceptibility Mapping," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    6. Ho Gul Kim & Dong Kun Lee & Chan Park, 2018. "Assessing the Cost of Damage and Effect of Adaptation to Landslides Considering Climate Change," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
    2. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    2. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    3. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    4. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    5. Ellen Felizardo Batista & Larissa De Brum Passini & Alessander Christopher Morales Kormann, 2019. "Methodologies of Economic Measurement and Vulnerability Assessment for Application in Landslide Risk Analysis in a Highway Domain Strip: A Case Study in the Serra Pelada Region (Brazil)," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    6. Jay Simon, 2020. "Weight Approximation for Spatial Outcomes," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    7. Dymphna Nolasco-Javier & Lalit Kumar, 2018. "Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 921-941, January.
    8. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    9. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    10. Joram Wachira Mburu & An-Jui Li & Horn-Da Lin & Chih-Wei Lu, 2022. "Investigations of Unsaturated Slopes Subjected to Rainfall Infiltration Using Numerical Approaches—A Parametric Study and Comparative Review," Sustainability, MDPI, vol. 14(21), pages 1-37, November.
    11. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    12. Sinhang Kang & Seung-Rae Lee & Sung-Eun Cho, 2020. "Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    13. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    14. Elias Garcia-Urquia, 2016. "Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 2107-2132, July.
    15. A. Rosi & D. Lagomarsino & G. Rossi & S. Segoni & A. Battistini & N. Casagli, 2015. "Updating EWS rainfall thresholds for the triggering of landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 297-308, August.
    16. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.
    17. Xiangjian Rui & Lei Nie & Yan Xu & Hong Wang, 2019. "Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    18. Laura Sanchez-Castillo & Tetsuya Kubota & Israel Cantú-Silva & Toshiyuki Moriyama & Hasnawir, 2017. "A probability method of rainfall warning for sediment-related disaster in developing countries: a case study in Sierra Madre Oriental, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1893-1906, February.
    19. Waleed Abdelmoghny Metwaly Ogila, 2021. "Analysis and assessment of slope instability along international mountainous road in North Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2479-2517, April.
    20. Suhua Zhou & Guangqi Chen & Ligang Fang & Yunwen Nie, 2016. "GIS-Based Integration of Subjective and Objective Weighting Methods for Regional Landslides Susceptibility Mapping," Sustainability, MDPI, vol. 8(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2941-:d:164520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.