IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1100-d1579794.html
   My bibliography  Save this article

Charging Scheduling of Electric Vehicles Considering Uncertain Arrival Times and Time-of-Use Price

Author

Listed:
  • Zhaojie Wang

    (Business School, Ningbo University, Ningbo 315211, China
    Merchants’ Guild Economics and Cultural Intelligent Computing Laboratory, Ningbo University, Ningbo 315211, China)

  • Feifeng Zheng

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Ming Liu

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

To advance sustainable transportation solutions, this work investigates an electric vehicle charging scheduling problem under the uncertainty of vehicle arrival times. Given a set of appointed electric vehicles, the objective of the considered problem is to explore charging strategies that minimize the total charging cost for the charging station. To address this problem, this work first establishes a mixed-integer programming model. Then, an enhanced sample average approximation approach alongside two versions of distribution-free approaches are applied to solve the studied problem. Additionally, this study introduces a BP neural network-enhanced distribution-free approach to efficiently resolve the problem. Finally, numerical experiments are conducted to demonstrate the effectiveness of the proposed approaches.

Suggested Citation

  • Zhaojie Wang & Feifeng Zheng & Ming Liu, 2025. "Charging Scheduling of Electric Vehicles Considering Uncertain Arrival Times and Time-of-Use Price," Sustainability, MDPI, vol. 17(3), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1100-:d:1579794
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
    2. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    3. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    4. Ullah, Zia & Wang, Shaorong & Wu, Guan & Hasanien, Hany M. & Rehman, Anis Ur & Turky, Rania A. & Elkadeem, Mohamed R., 2023. "Optimal scheduling and techno-economic analysis of electric vehicles by implementing solar-based grid-tied charging station," Energy, Elsevier, vol. 267(C).
    5. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    6. Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
    7. Diefenbach, Heiko & Emde, Simon & Glock, C. H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 135964, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    9. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    10. Zhang, Le & Wang, Shuaian & Qu, Xiaobo, 2021. "Optimal electric bus fleet scheduling considering battery degradation and non-linear charging profile," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    11. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    12. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    13. Ng, ManWo, 2014. "Distribution-free vessel deployment for liner shipping," European Journal of Operational Research, Elsevier, vol. 238(3), pages 858-862.
    14. Wu, Ji & Su, Hao & Meng, Jinhao & Lin, Mingqiang, 2023. "Electric vehicle charging scheduling considering infrastructure constraints," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    2. Jing Wang & Heqi Wang & Chunguang Wang, 2023. "Optimal Charging Pile Configuration and Charging Scheduling for Electric Bus Routes Considering the Impact of Ambient Temperature on Charging Power," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    3. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    4. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    5. Weilin Tang & Xinghan Chen & Maoxiang Lang & Shiqi Li & Yuying Liu & Wenyu Li, 2024. "Optimization of Truck–Cargo Online Matching for the Less-Than-Truck-Load Logistics Hub under Real-Time Demand," Mathematics, MDPI, vol. 12(5), pages 1-31, March.
    6. Dapeng Yang & Daqing Wu & Luyan Shi, 2019. "Distribution-Free Stochastic Closed-Loop Supply Chain Design Problem with Financial Management," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    7. Wagner, Dennis & Walther, Grit, 2024. "Techno-economic analysis of mixed battery and fuel cell electric bus fleets: A case study," Applied Energy, Elsevier, vol. 376(PA).
    8. Ming Liu & Zhongzheng Liu & Rongfan Liu & Lihua Sun, 2022. "Distribution-Free Approaches for an Integrated Cargo Routing and Empty Container Repositioning Problem with Repacking Operations in Liner Shipping Networks," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    9. Zhang, Li & Chen, Tingting & Yao, Baozhen & Yu, Bin & Wang, Yunpeng, 2025. "Routing and charging scheduling for the electric carsharing system with mobile charging vehicles," Omega, Elsevier, vol. 131(C).
    10. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    11. Zaidi, I. & Oulamara, A. & Idoumghar, L. & Basset, M., 2024. "Maximizing the number of satisfied charging demands of electric vehicles on identical chargers," Omega, Elsevier, vol. 127(C).
    12. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    13. Tahir, Mustafa & Hu, Sideng & Khan, Tahir & Zhu, Haoqi, 2024. "Multi-energy station design for future electric vehicles: A synergistic approach starting from scratch," Applied Energy, Elsevier, vol. 372(C).
    14. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    15. Chen, Guibin & Yang, Lun & Cao, Xiaoyu, 2025. "A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles," Applied Energy, Elsevier, vol. 378(PA).
    16. Huang, Di & Zhang, Jinyu & Liu, Zhiyuan & He, Yiliu & Liu, Pan, 2024. "A novel ranking method based on semi-SPO for battery swapping allocation optimization in a hybrid electric transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    17. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    18. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    19. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    20. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1100-:d:1579794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.