IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219325022.html
   My bibliography  Save this article

Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network

Author

Listed:
  • Luo, Yugong
  • Feng, Guixuan
  • Wan, Shuang
  • Zhang, Shuwei
  • Li, Victor
  • Kong, Weiwei

Abstract

With the popularization of electric vehicles, large-scale electric vehicle charging may negatively impact drivers, the power grid, and traffic conditions. Currently, research conducted on the charging and battery swap of electric vehicles is insufficient. The objective for optimization and the type of electric vehicle proposed by other papers are limited in scope. In order to achieve an overall optimization of the whole system, the driver demands, the road traffic speed, the number of vehicles in the charging station and the charging network load are considered in the development of the charging scheduling strategy for electric vehicles. Such a strategy can further enhance driver convenience in terms of making decisions for charging and battery swap of electric vehicles. Moreover, different types of electric vehicles are taken into account for a more practical proposed scheduling strategy. Utilizing MATLAB and MATPOWER, a simulation platform is established to validate the strategy. Simulation results demonstrate that the proposed scheduling strategy can relieve local traffic jams, smooth network load curve, increase safety and economy of the power network, and decrease the number of charging electric vehicles in station. Ultimately, this plan can simultaneously reduce waiting time of charging and increase the operational efficiency of charging stations.

Suggested Citation

  • Luo, Yugong & Feng, Guixuan & Wan, Shuang & Zhang, Shuwei & Li, Victor & Kong, Weiwei, 2020. "Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325022
    DOI: 10.1016/j.energy.2019.116807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219325022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    2. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    3. Wang, Nannan & Chang, Yen-Chiang, 2014. "The evolution of low-carbon development strategies in China," Energy, Elsevier, vol. 68(C), pages 61-70.
    4. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    5. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    6. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    7. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    8. Robledo, Carla B. & Oldenbroek, Vincent & Abbruzzese, Francesca & van Wijk, Ad J.M., 2018. "Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building," Applied Energy, Elsevier, vol. 215(C), pages 615-629.
    9. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    10. Luo, Yugong & Zhu, Tao & Wan, Shuang & Zhang, Shuwei & Li, Keqiang, 2016. "Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems," Energy, Elsevier, vol. 97(C), pages 359-368.
    11. Liao, Chung-Shou & Lu, Shang-Hung & Shen, Zuo-Jun Max, 2016. "The electric vehicle touring problem," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 163-180.
    12. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Zhu, Feiqin & Li, Yalun & Lu, Languang & Wang, Hewu & Li, Liguo & Li, Kexin & Ouyang, Minggao, 2023. "Life cycle optimization framework of charging–swapping integrated energy supply systems for multi-type vehicles," Applied Energy, Elsevier, vol. 351(C).
    3. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    4. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    5. Yin, WanJun & Wen, Tao & Zhang, Chao, 2023. "Cooperative optimal scheduling strategy of electric vehicles based on dynamic electricity price mechanism," Energy, Elsevier, vol. 263(PA).
    6. Li, Jianwei & Zou, Weitao & Yang, Qingqing & Yao, Fang & Zhu, Jin, 2024. "EV charging fairness protective management against charging demand uncertainty for a new “1 to N” automatic charging pile," Energy, Elsevier, vol. 306(C).
    7. Lai, Chun Sing & Chen, Dashen & Zhang, Jinning & Zhang, Xin & Xu, Xu & Taylor, Gareth A. & Lai, Loi Lei, 2022. "Profit maximization for large-scale energy storage systems to enable fast EV charging infrastructure in distribution networks," Energy, Elsevier, vol. 259(C).
    8. Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
    9. Rasti-Barzoki, Morteza & Moon, Ilkyeong, 2021. "A game theoretic approach for analyzing electric and gasoline-based vehicles’ competition in a supply chain under government sustainable strategies: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Shanwei Li & Jingjie Li & Junli Ding & Mochen Sun & Chenying Cui, 2023. "A Game Strategy Study on Innovation Efficiency of China’s Listed Charging Pile Companies: Based on Generalized Fuzzy DEA Method," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    11. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Wu, Qin & Cudjoe, Dan, 2024. "Refueling convenience and range satisfaction in electric mobility: Investigating consumer willingness to use battery swap services for electric vehicles," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    12. Robert M. Bridi & Marwa Ben Jabra & Naeema Al Hosani, 2022. "An Examination of Consumers’ Opinions toward Adopting Electric Vehicles in the United Arab Emirates: On the Effects of Functional and Symbolic Values," Energies, MDPI, vol. 15(16), pages 1-19, August.
    13. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing & Shahidehpour, Mohammad, 2021. "Two-stage robust distribution system operation by coordinating electric vehicle aggregator charging and load curtailments," Energy, Elsevier, vol. 226(C).
    14. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    15. Jian Chen & Fangyi Li & Ranran Yang & Dawei Ma, 2020. "Impacts of Increasing Private Charging Piles on Electric Vehicles’ Charging Profiles: A Case Study in Hefei City, China," Energies, MDPI, vol. 13(17), pages 1-17, August.
    16. Corinaldesi, Carlo & Lettner, Georg & Auer, Hans, 2022. "On the characterization and evaluation of residential on-site E-car-sharing," Energy, Elsevier, vol. 246(C).
    17. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    19. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    20. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    21. Poyrazoglu, Gokturk & Coban, Elvin, 2021. "A stochastic value estimation tool for electric vehicle charging points," Energy, Elsevier, vol. 227(C).
    22. Adu-Gyamfi, Gibbson & Song, Huaming & Nketiah, Emmanuel & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Determinants of adoption intention of battery swap technology for electric vehicles," Energy, Elsevier, vol. 251(C).
    23. Li, Xinyu & Cao, Yue & Yan, Fei & Li, Yuzhe & Zhao, Wanlin & Wang, Yue, 2022. "Towards user-friendly energy supplement service considering battery degradation cost," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popović Vlado & Jereb Borut & Kilibarda Milorad & Andrejić Milan & Keshavarzsaleh Abolfazl & Dragan Dejan, 2018. "Electric Vehicles as Electricity Storages in Electric Power Systems," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 57-72, October.
    2. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    3. Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
    4. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
    6. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    7. Jiang, Huaiguang & Zhang, Yingchen & Chen, Yuche & Zhao, Changhong & Tan, Jin, 2018. "Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach," Applied Energy, Elsevier, vol. 229(C), pages 756-766.
    8. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    9. Keumju Lim & Justine Jihyun Kim & Jongsu Lee, 2020. "Forecasting the future scale of vehicle to grid technology for electric vehicles and its economic value as future electric energy source: The case of South Korea," Energy & Environment, , vol. 31(8), pages 1350-1366, December.
    10. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    11. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    12. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    13. Esther H. Park Lee & Zofia Lukszo & Paulien Herder, 2018. "Conceptualization of Vehicle-to-Grid Contract Types and Their Formalization in Agent-Based Models," Complexity, Hindawi, vol. 2018, pages 1-11, March.
    14. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    15. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    16. Huang, Bing & Meijssen, Aart Gerard & Annema, Jan Anne & Lukszo, Zofia, 2021. "Are electric vehicle drivers willing to participate in vehicle-to-grid contracts? A context-dependent stated choice experiment," Energy Policy, Elsevier, vol. 156(C).
    17. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    18. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2023. "Estimating financial compensation and minimum guaranteed charge for vehicle-to-grid technology," Energy Policy, Elsevier, vol. 180(C).
    19. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    20. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.