IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v177y2016icp649-660.html
   My bibliography  Save this article

Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu

Author

Listed:
  • Ke, Bwo-Ren
  • Chung, Chen-Yuan
  • Chen, Yen-Chang

Abstract

The growth of worldwide environmental awareness has prompted numerous countries to focus on developing energy-conservation and carbon-reduction technology. The advancement of such technology enables the emergence of low-noise, low-polluting alternatives for bus systems, such as hybrid-electric, battery-electric, and fuel-cell electric buses (e-buses). For such buses to serve the existing schedules and lines operated by their conventional counterparts, reorganizing bus transportation systems is a major challenge and entails construction costs that comprise the costs of e-buses, battery capacity, chargers, and bus scheduling.

Suggested Citation

  • Ke, Bwo-Ren & Chung, Chen-Yuan & Chen, Yen-Chang, 2016. "Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu," Applied Energy, Elsevier, vol. 177(C), pages 649-660.
  • Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:649-660
    DOI: 10.1016/j.apenergy.2016.05.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bi, Zicheng & Song, Lingjun & De Kleine, Robert & Mi, Chunting Chris & Keoleian, Gregory A., 2015. "Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system," Applied Energy, Elsevier, vol. 146(C), pages 11-19.
    2. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
    3. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    4. Yuan, Xinmei & Li, Lili & Gou, Huadong & Dong, Tingting, 2015. "Energy and environmental impact of battery electric vehicle range in China," Applied Energy, Elsevier, vol. 157(C), pages 75-84.
    5. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    6. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    7. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
    8. Blaifi, S. & Moulahoum, S. & Colak, I. & Merrouche, W., 2016. "An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications," Applied Energy, Elsevier, vol. 169(C), pages 888-898.
    9. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    10. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    11. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    12. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    13. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    14. Miles, John & Potter, Stephen, 2014. "Developing a viable electric bus service: The Milton Keynes demonstration project," Research in Transportation Economics, Elsevier, vol. 48(C), pages 357-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    2. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    3. Liu, Hu-Chen & You, Xiao-Yue & Xue, Yi-Xi & Luan, Xue, 2017. "Exploring critical factors influencing the diffusion of electric vehicles in China: A multi-stakeholder perspective," Research in Transportation Economics, Elsevier, vol. 66(C), pages 46-58.
    4. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    5. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    6. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    7. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    8. Ercan, Tolga & Zhao, Yang & Tatari, Omer & Pazour, Jennifer A., 2015. "Optimization of transit bus fleet's life cycle assessment impacts with alternative fuel options," Energy, Elsevier, vol. 93(P1), pages 323-334.
    9. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    10. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    11. Peng, Wei & Yang, Junnan & Lu, Xi & Mauzerall, Denise L., 2018. "Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China," Applied Energy, Elsevier, vol. 218(C), pages 511-519.
    12. Mahmoodi-k, Mehdi & Montazeri, Morteza & Madanipour, Vahid, 2021. "Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition," Energy, Elsevier, vol. 233(C).
    13. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    14. Lei, Fei & Du, Bin & Liu, Xin & Xie, Xiaoping & Chai, Tian, 2016. "Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle," Energy, Elsevier, vol. 113(C), pages 980-990.
    15. Lei, Fei & Gu, Ke & Du, Bin & Xie, Xiaoping, 2017. "Comprehensive global optimization of an implicit constrained multi-physics system for electric vehicles with in-wheel motors," Energy, Elsevier, vol. 139(C), pages 523-534.
    16. Lin, Boqiang & Tan, Ruipeng, 2017. "Are people willing to pay more for new energy bus fares?," Energy, Elsevier, vol. 130(C), pages 365-372.
    17. Christos Keramydas & Georgios Papadopoulos & Leonidas Ntziachristos & Ting-Shek Lo & Kwok-Lam Ng & Hok-Lai Anson Wong & Carol Ka-Lok Wong, 2018. "Real-World Measurement of Hybrid Buses’ Fuel Consumption and Pollutant Emissions in a Metropolitan Urban Road Network," Energies, MDPI, vol. 11(10), pages 1-16, September.
    18. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2018. "Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 569-579.
    19. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    20. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:649-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.