IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924020890.html
   My bibliography  Save this article

A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles

Author

Listed:
  • Chen, Guibin
  • Yang, Lun
  • Cao, Xiaoyu

Abstract

The adoption of electric vehicles (EVs) is increasingly recognized as a promising solution to decarbonization, thereby large scales of EVs are integrated into transportation and power systems in recent years. The transportation and power systems' operation states largely influence EVs' patterns, introducing uncertainties into EVs' driving patterns and energy demand. Such uncertainties make it a challenge to optimize the operations of charging stations, which provide both charging and electric grid services such as demand responses. To handle this dilemma, this paper models the chargers' operation decisions as a constrained Markov decision process (CMDP). By synergistically combining the augmented Lagrangian method and soft actor-critic algorithm, a novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP. The actor-network is updated in a policy gradient manner with the Lagrangian value function. A double-critics network is adopted to estimate the action-value function to avoid overestimation bias synchronously. The proposed algorithm does not require a strong convexity guarantee of examined problems and is sample efficient. Comprehensive numerical experiments with real-world electricity prices demonstrate that our proposed algorithm can achieve high solution optimality and constraint compliance.

Suggested Citation

  • Chen, Guibin & Yang, Lun & Cao, Xiaoyu, 2025. "A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020890
    DOI: 10.1016/j.apenergy.2024.124706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.