IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4682-d1406284.html
   My bibliography  Save this article

Vertical Takeoff and Landing for Distribution of Parcels to Hospitals: A Case Study about Industry 5.0 Application in Israel’s Healthcare Arena

Author

Listed:
  • Michael Naor

    (School of Business Administration, Hebrew University, Jerusalem 9190501, Israel)

  • Gavriel David Pinto

    (Industrial Engineering and Management, Azrieli College of Engineering, Jerusalem 9103501, Israel)

  • Pini Davidov

    (Industrial Engineering and Management, Azrieli College of Engineering, Jerusalem 9103501, Israel
    UNEC Cognitive Economics Center, Azerbaijan State University of Economics, Baku AZ1001, Azerbaijan)

  • Yuval Cohen

    (Department of Industrial Engineering, Afeka Academic College of Engineering, Tel Aviv-Yafo 699988, Israel)

  • Linor Izchaki

    (Industrial Engineering and Management, Azrieli College of Engineering, Jerusalem 9103501, Israel)

  • Mukarram Hadieh

    (Industrial Engineering and Management, Azrieli College of Engineering, Jerusalem 9103501, Israel)

  • Malak Ghaith

    (Industrial Engineering and Management, Azrieli College of Engineering, Jerusalem 9103501, Israel)

Abstract

To gain a sustained competitive advantage, organizations such as UPS, Fedex, Amazon, etc., began to seek for industry 5.0 innovative autonomous delivery options for the last mile. Autonomous unmanned aerial vehicles are a promising alternative for the logistics industry. The fact that drones are propelled by green renewable energy source fits the companies’ need to become sustainable, replacing their fuel truck fleets, especially for traveling to remote rural locations to deliver small packages, but a major obstacle is the necessity for charging stations which is well documented in the literature. Therefore, the current research embarks on devising a novel yet practical piece of technology adopting the simplicity approach of direct flights to destinations. The analysis showcases the application for a network of warehouses and hospitals in Israel while controlling costs. Given the products in the case study are medical, direct flight has the potential to save lives when every moment counts. Hydrogen cell technology allows long-range flying without refueling, and it is both vibration-free which is essential for sensitive medical equipment and environmentally friendly in terms of air pollution and silence in urban areas. Importantly, hydrogen cells are lighter, with higher energy density than batteries, which makes them ideal for drone usage to reduce weight, maintain a longer life, and enable faster charging, all of which minimize downtime. Also, hydrogen sourcing is low-cost and unlimited compared to lithium-ion material which needs to be mined. The case study investigates an Israeli entrepreneurial company, Gadfin, which builds a vertical takeoff-and-landing-type of drone with folded wings that enable higher speed for the delivery of refrigerated medical cargo, blood, organs for transplant, and more to hospitals in partnership with the Israeli medical logistic conglomerate, SAREL. An analysis of shipping optimization (concerning the number and type of drone) is conducted using a mixed-integer linear programming technique based on various types of constraints such as traveling distance, parcel weight, the amount of flight controllers and daily number of flights allowed in order to not overcrowd the airspace. Importantly, the discussion assesses the ecosystem’s variety of risks and commensurate safety mechanisms for advancing a newly shaped landscape of drones in an Israeli tight airspace to establish a network of national routes for drone traffic. The conclusion of this research cautions limitations to overcome as the utilization of drones expand and offers future research avenues.

Suggested Citation

  • Michael Naor & Gavriel David Pinto & Pini Davidov & Yuval Cohen & Linor Izchaki & Mukarram Hadieh & Malak Ghaith, 2024. "Vertical Takeoff and Landing for Distribution of Parcels to Hospitals: A Case Study about Industry 5.0 Application in Israel’s Healthcare Arena," Sustainability, MDPI, vol. 16(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4682-:d:1406284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    2. Thuy-Hang Tran & Dinh-Dung Nguyen, 2022. "Management and Regulation of Drone Operation in Urban Environment: A Case Study," Social Sciences, MDPI, vol. 11(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    2. Yanina Fumero & Gabriela Corsano & Jorge Montagna, 2012. "Planning and scheduling of multistage multiproduct batch plants operating under production campaigns," Annals of Operations Research, Springer, vol. 199(1), pages 249-268, October.
    3. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    4. Stefansson, Hlynur & Sigmarsdottir, Sigrun & Jensson, Pall & Shah, Nilay, 2011. "Discrete and continuous time representations and mathematical models for large production scheduling problems: A case study from the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 215(2), pages 383-392, December.
    5. Moo-Sung Sohn & Jiwoong Choi & Hoseog Kang & In-Chan Choi, 2017. "Multiobjective Production Planning at LG Display," Interfaces, INFORMS, vol. 47(4), pages 279-291, August.
    6. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Dujardin, Yann & Vanderpooten, Daniel & Boillot, Florence, 2015. "A multi-objective interactive system for adaptive traffic control," European Journal of Operational Research, Elsevier, vol. 244(2), pages 601-610.
    8. Grzegorz Bocewicz & Zbigniew Banaszak & Izabela Nielsen, 2019. "Multimodal processes prototyping subject to grid-like network and fuzzy operation time constraints," Annals of Operations Research, Springer, vol. 273(1), pages 561-585, February.
    9. Mohammad Heydari & Yanan Fan & Kin Keung Lai, 2023. "A Robust Site Selection Model under uncertainty for Special Hospital Wards in Hong Kong," Papers 2307.11508, arXiv.org.
    10. Alix Vargas & Carmen Fuster & David Corne, 2020. "Towards Sustainable Collaborative Logistics Using Specialist Planning Algorithms and a Gain-Sharing Business Model: A UK Case Study," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    11. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    12. Gian Paramo & Arturo Bretas, 2023. "Proactive Frequency Stability Scheme: A Distributed Framework Based on Particle Filters and Synchrophasors," Energies, MDPI, vol. 16(11), pages 1-19, June.
    13. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    14. Mohammad Heydari & Kin Keung Lai, 2023. "Post-COVID-19 Pandemic Era and Sustainable Healthcare: Organization and Delivery of Health Economics Research (Principles and Clinical Practice)," Mathematics, MDPI, vol. 11(16), pages 1-30, August.
    15. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    16. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    17. Casey Chung & Milind Dawande & Divakar Rajamani & Chelliah Sriskandarajah, 2011. "A Short-Range Scheduling Model for Blockbuster's Order-Processing Operation," Interfaces, INFORMS, vol. 41(5), pages 466-484, October.
    18. Ioannis Fragkos & Bert De Reyck, 2016. "Improving the Maritime Transshipment Operations of the Noble Group," Interfaces, INFORMS, vol. 46(3), pages 203-217, April.
    19. Chung, S.H. & Lau, H.C.W. & Choy, K.L. & Ho, G.T.S. & Tse, Y.K., 2010. "Application of genetic approach for advanced planning in multi-factory environment," International Journal of Production Economics, Elsevier, vol. 127(2), pages 300-308, October.
    20. Cummings, Thomas & Adamson, Richard & Sugden, Andrew & Willis, Mark J., 2017. "Retrospective and predictive optimal scheduling of nitrogen liquefier units and the effect of renewable generation," Applied Energy, Elsevier, vol. 208(C), pages 158-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4682-:d:1406284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.