IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p7684-d591419.html
   My bibliography  Save this article

A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0

Author

Listed:
  • Raja Awais Liaqait

    (Department of Mechanical Engineering, Capital University of Science & Technology, Islamabad 44000, Pakistan)

  • Shermeen Hamid

    (Department of Mechanical Engineering, Capital University of Science & Technology, Islamabad 44000, Pakistan)

  • Salman Sagheer Warsi

    (Department of Mechanical Engineering, Capital University of Science & Technology, Islamabad 44000, Pakistan)

  • Azfar Khalid

    (Department of Engineering, School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham NG11 8NS, UK)

Abstract

Scheduling plays a pivotal role in the competitiveness of a job shop facility. The traditional job shop scheduling problem (JSSP) is centralized or semi-distributed. With the advent of Industry 4.0, there has been a paradigm shift in the manufacturing industry from traditional scheduling to smart distributed scheduling (SDS). The implementation of Industry 4.0 results in increased flexibility, high product quality, short lead times, and customized production. Smart/intelligent manufacturing is an integral part of Industry 4.0. The intelligent manufacturing approach converts renewable and nonrenewable resources into intelligent objects capable of sensing, working, and acting in a smart environment to achieve effective scheduling. This paper aims to provide a comprehensive review of centralized and decentralized/distributed JSSP techniques in the context of the Industry 4.0 environment. Firstly, centralized JSSP models and problem-solving methods along with their advantages and limitations are discussed. Secondly, an overview of associated techniques used in the Industry 4.0 environment is presented. The third phase of this paper discusses the transition from traditional job shop scheduling to decentralized JSSP with the aid of the latest research trends in this domain. Finally, this paper highlights futuristic approaches in the JSSP research and application in light of the robustness of JSSP and the current pandemic situation.

Suggested Citation

  • Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7684-:d:591419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/7684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/7684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Dolgui & Dmitry Ivanov & Suresh P. Sethi & Boris Sokolov, 2019. "Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 411-432, January.
    2. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    3. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    4. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    5. S Q Liu & E Kozan, 2012. "A hybrid shifting bottleneck procedure algorithm for the parallel-machine job-shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 168-182, February.
    6. Le Gal, P.-Y. & Lyne, P.W.L. & Meyer, E. & Soler, L.-G., 2008. "Impact of sugarcane supply scheduling on mill sugar production: A South African case study," Agricultural Systems, Elsevier, vol. 96(1-3), pages 64-74, March.
    7. Kacem, Imed & Hammadi, Slim & Borne, Pierre, 2002. "Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 245-276.
    8. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    9. Harvey M. Wagner, 1959. "An integer linear‐programming model for machine scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(2), pages 131-140, June.
    10. Stephen C. Graves, 1981. "A Review of Production Scheduling," Operations Research, INFORMS, vol. 29(4), pages 646-675, August.
    11. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    12. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    13. Pisut Pongchairerks, 2014. "A self-tuning PSO for job-shop scheduling problems," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 19(1), pages 96-113.
    14. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    15. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    16. Erwin Pesch & Ulrich A. W. Tetzlaff, 1996. "Constraint Propagation Based Scheduling of Job Shops," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 144-157, May.
    17. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner & Marina Ivanova, 2016. "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 386-402, January.
    18. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    19. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    20. N. Hefetz & I. Adiri, 1982. "An Efficient Optimal Algorithm for the Two-Machines Unit-Time Jobshop Schedule-Length Problem," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 354-360, August.
    21. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    22. Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
    23. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    24. Kolonko, M., 1999. "Some new results on simulated annealing applied to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 113(1), pages 123-136, February.
    25. Berti, Nicola & Finco, Serena & Battaïa, Olga & Delorme, Xavier, 2021. "Ageing workforce effects in Dual-Resource Constrained job-shop scheduling," International Journal of Production Economics, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Bertolini & Francesco Leali & Davide Mezzogori & Cristina Renzi, 2023. "A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    2. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    4. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    5. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    6. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    7. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    8. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    9. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    10. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    11. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    12. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    13. Pongcharoen, P. & Hicks, C. & Braiden, P. M. & Stewardson, D. J., 2002. "Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products," International Journal of Production Economics, Elsevier, vol. 78(3), pages 311-322, August.
    14. Golenko-Ginzburg, Dimitri & Kesler, Shmuel & Landsman, Zinoviy, 1995. "Industrial job-shop scheduling with random operations and different priorities," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 185-195, August.
    15. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    16. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    17. Li, Guo & Li, Na & Sambandam, Narayanasamy & Sethi, Suresh P. & Zhang, Faping, 2018. "Flow shop scheduling with jobs arriving at different times," International Journal of Production Economics, Elsevier, vol. 206(C), pages 250-260.
    18. Mukherjee, Saral & Chatterjee, A.K., 2006. "Applying machine based decomposition in 2-machine flow shops," European Journal of Operational Research, Elsevier, vol. 169(3), pages 723-741, March.
    19. Christian Artigues & Dominique Feillet, 2008. "A branch and bound method for the job-shop problem with sequence-dependent setup times," Annals of Operations Research, Springer, vol. 159(1), pages 135-159, March.
    20. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:7684-:d:591419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.