IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp316-326.html
   My bibliography  Save this article

Balancing market integration in the Northern European continent

Author

Listed:
  • Farahmand, H.
  • Doorman, G.L.

Abstract

This paper analyses the integration of the balancing power markets in Northern Europe including the Nordic system, Germany and the Netherlands. Two cases of balancing market integration are analysed: the current state with individual balancing markets, and the full integration of these markets, where the day-ahead market and the balancing market are settled separately. First, the day-ahead market is modelled as a common market for the whole European continent, while a simultaneous reserve procurement modelling is done for the Northern Europe. Available transmission capacity is considered to be allocated implicitly for the exchange of balancing services based on a trade-off between day-ahead energy and balancing capacity exchange. Next, the balancing energy market is modelled as a real-time power dispatch on the basis of the day-ahead market clearing results and the simulated imbalances.

Suggested Citation

  • Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:316-326
    DOI: 10.1016/j.apenergy.2011.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang, Ove & Haugstad, Arne & Mo, Birger & Gjelsvik, Anders & Wangensteen, Ivar & Doorman, Gerard, 2009. "Hydro reservoir handling in Norway before and after deregulation," Energy, Elsevier, vol. 34(10), pages 1642-1651.
    2. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    3. Skytte, Klaus, 1999. "The regulating power market on the Nordic power exchange Nord Pool: an econometric analysis," Energy Economics, Elsevier, vol. 21(4), pages 295-308, August.
    4. Riedel, Stefan & Weigt, Hannes, 2007. "German Electricity Reserve Markets," MPRA Paper 65664, University Library of Munich, Germany.
    5. Amundsen, Eirik S. & Bergman, Lars, 2007. "Provision of operating reserve capacity: Principles and practices on the Nordic Electricity Market," MPRA Paper 10861, University Library of Munich, Germany.
    6. Snyder, Brian & Kaiser, Mark J., 2009. "A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development," Applied Energy, Elsevier, vol. 86(10), pages 1845-1856, October.
    7. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
    8. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    2. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    3. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Schmidt, Johannes & Eisel, Matthias & Kolbe, Lutz M., 2014. "Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems," Energy Policy, Elsevier, vol. 74(C), pages 179-189.
    5. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    6. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    7. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    8. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    9. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    10. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.
    11. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    12. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    13. Snyder, Brian & Kaiser, Mark J., 2009. "Offshore wind power in the US: Regulatory issues and models for regulation," Energy Policy, Elsevier, vol. 37(11), pages 4442-4453, November.
    14. Yanina Fumero & Gabriela Corsano & Jorge Montagna, 2012. "Planning and scheduling of multistage multiproduct batch plants operating under production campaigns," Annals of Operations Research, Springer, vol. 199(1), pages 249-268, October.
    15. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    16. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    17. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    18. Luis M. Abadie & José M. Chamorro, 2014. "Valuation of Wind Energy Projects: A Real Options Approach," Energies, MDPI, vol. 7(5), pages 1-38, May.
    19. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    20. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:316-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.