IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v139y2005i1p131-16210.1007-s10479-005-3446-x.html
   My bibliography  Save this article

Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications

Author

Listed:
  • Christodoulos Floudas
  • Xiaoxia Lin

Abstract

This paper reviews the advances of mixed-integer linear programming (MILP) based approaches for the scheduling of chemical processing systems. We focus on the short-term scheduling of general network represented processes. First, the various mathematical models that have been proposed in the literature are classified mainly based on the time representation. Discrete-time and continuous-time models are presented along with their strengths and limitations. Several classes of approaches for improving the computational efficiency in the solution of MILP problems are discussed. Furthermore, a summary of computational experiences and applications is provided. The paper concludes with perspectives on future research directions for MILP based process scheduling technologies. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
  • Handle: RePEc:spr:annopr:v:139:y:2005:i:1:p:131-162:10.1007/s10479-005-3446-x
    DOI: 10.1007/s10479-005-3446-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-005-3446-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-005-3446-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    2. Jose Pinto & Ignacio Grossmann, 1998. "Assignment and sequencing models for thescheduling of process systems," Annals of Operations Research, Springer, vol. 81(0), pages 433-466, June.
    3. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    4. Siqun Wang & Monique Guignard, 2002. "Redefining Event Variables for Efficient Modeling of Continuous-Time Batch Processing," Annals of Operations Research, Springer, vol. 116(1), pages 113-126, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhattacharya, Subir & Bose, Sumit Kumar, 2007. "Mathematical model for scheduling operations in cascaded continuous processing units," European Journal of Operational Research, Elsevier, vol. 182(1), pages 1-14, October.
    2. Sumit Bose & Subir Bhattacharya, 2008. "A two pass heuristic algorithm for scheduling ‘blocked out’ units in continuous process industry," Annals of Operations Research, Springer, vol. 159(1), pages 293-313, March.
    3. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    4. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    5. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    6. Adhau, Sunil & Mittal, M.L. & Mittal, Abhinav, 2013. "A multi-agent system for decentralized multi-project scheduling with resource transfers," International Journal of Production Economics, Elsevier, vol. 146(2), pages 646-661.
    7. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    8. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    9. Salewski, Frank & Schirmer, Andreas & Drexl, Andreas, 1996. "Project Scheduling under Resource and Mode Identity Constraints. Part II: An Application to Audit-Staff Scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 388, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.
    11. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    12. Sciau, Jean-Baptiste & Goyon, Agathe & Sarazin, Alexandre & Bascans, Jérémy & Prud’homme, Charles & Lorca, Xavier, 2024. "Using constraint programming to address the operational aircraft line maintenance scheduling problem," Journal of Air Transport Management, Elsevier, vol. 115(C).
    13. Pablo Alvarez-Campana & Felix Villafanez & Fernando Acebes & David Poza, 2024. "Simulation-based approach for Multiproject Scheduling based on composite priority rules," Papers 2406.02102, arXiv.org.
    14. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    15. Jih-Jeng Huang, 2016. "Resource decision making for vertical and horizontal integration problems in an enterprise," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1363-1372, November.
    16. Gonçalves, J.F. & Mendes, J.J.M. & Resende, M.G.C., 2008. "A genetic algorithm for the resource constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1171-1190, September.
    17. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    18. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    19. Kolisch, Rainer, 1994. "Serial and parallel resource-constrained projekt scheduling methodes revisited: Theory and computation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 344, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:139:y:2005:i:1:p:131-162:10.1007/s10479-005-3446-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.