IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v210y2021ics0951832021000946.html
   My bibliography  Save this article

Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems

Author

Listed:
  • Mancuso, A.
  • Compare, M.
  • Salo, A.
  • Zio, E.

Abstract

The performance of the Prognostics and Health Management (PHM) depends both on the functioning of the measurement acquisition system and on the actual state of the system being monitored. The dependencies between these systems must be considered when developing optimal inspection and maintenance strategies. This paper presents a methodology to support the definition maintenance strategies for PHM-equipped industrial systems. The methodology employs influence diagrams when seeking to maximize the expected utility of system operation. The optimization problem is solved by mixed-integer linear programming, subject to budget and technical constraints. Chance constraints can be also included, for instance to curtail risks based on measures such as the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of system operation. The viability of the methodology is demonstrated by optimizing the inspection and maintenance strategy for a gas turbine equipped with PHM solution. The computation of the Value of Perfect Information (VoPI) provides additional insights on maintenance management.

Suggested Citation

  • Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000946
    DOI: 10.1016/j.ress.2021.107536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    4. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.
    5. Panagiotidou, S. & Tagaras, G., 2012. "Optimal integrated process control and maintenance under general deterioration," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 58-70.
    6. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2019. "Portfolio optimization of safety measures for the prevention of time-dependent accident scenarios," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Driessen, J.P.C. & Peng, H. & van Houtum, G.J., 2017. "Maintenance optimization under non-constant probabilities of imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 115-123.
    9. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 214-224.
    10. Vilkkumaa, Eeva & Liesiö, Juuso & Salo, Ahti, 2014. "Optimal strategies for selecting project portfolios using uncertain value estimates," European Journal of Operational Research, Elsevier, vol. 233(3), pages 772-783.
    11. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    12. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    13. Liesiö, Juuso & Salo, Ahti, 2012. "Scenario-based portfolio selection of investment projects with incomplete probability and utility information," European Journal of Operational Research, Elsevier, vol. 217(1), pages 162-172.
    14. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    15. Rasmekomen, Nipat & Parlikad, Ajith Kumar, 2016. "Condition-based maintenance of multi-component systems with degradation state-rate interactions," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 1-10.
    16. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    17. Rocchetta, R. & Bellani, L. & Compare, M. & Zio, E. & Patelli, E., 2019. "A reinforcement learning framework for optimal operation and maintenance of power grids," Applied Energy, Elsevier, vol. 241(C), pages 291-301.
    18. Memarzadeh, Milad & Pozzi, Matteo, 2016. "Value of information in sequential decision making: Component inspection, permanent monitoring and system-level scheduling," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 137-151.
    19. Papakonstantinou, K.G. & Shinozuka, M., 2014. "Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 202-213.
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    21. Michele Compare & Luca Bellani & Enrico Zio, 2017. "Availability Model of a PHM-Equipped Component," Post-Print hal-01652232, HAL.
    22. Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
    23. Jeffrey Keisler, 2004. "Value of Information in Portfolio Decision Analysis," Decision Analysis, INFORMS, vol. 1(3), pages 177-189, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Wan, Shaoke & Li, Xiaohu & Zhang, Yanfei & Liu, Shijie & Hong, Jun & Wang, Dongfeng, 2022. "Bearing remaining useful life prediction with convolutional long short-term memory fusion networks," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Lee, Dongjin & Kramer, Boris, 2023. "Multifidelity conditional value-at-risk estimation by dimensionally decomposed generalized polynomial chaos-Kriging," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    12. Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    3. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    4. Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    6. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Efraim Laksman & Ann-Brith Strömberg & Michael Patriksson, 2020. "The stochastic opportunistic replacement problem, part III: improved bounding procedures," Annals of Operations Research, Springer, vol. 292(2), pages 711-733, September.
    10. Compare, Michele & Baraldi, Piero & Marelli, Paolo & Zio, Enrico, 2020. "Partially observable Markov decision processes for optimal operations of gas transmission networks," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    13. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.
    15. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    17. Lozano, Jorge-Mario & Zuluaga, Santiago & Sánchez-Silva, Mauricio, 2020. "Developing flexible management strategies in infrastructure: The sequential expansion problem for infrastructure analysis (SEPIA)," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    18. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    20. Özgür-Ünlüakın, Demet & Bilgiç, Taner, 2017. "Performance analysis of an aggregation and disaggregation solution procedure to obtain a maintenance plan for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 652-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021000946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.