IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp643-655.html
   My bibliography  Save this article

Stochastic optimization models for energy management in carbonization process of carbon fiber production

Author

Listed:
  • Khayyam, Hamid
  • Naebe, Minoo
  • Bab-Hadiashar, Alireza
  • Jamshidi, Farshid
  • Li, Quanxiang
  • Atkiss, Stephen
  • Buckmaster, Derek
  • Fox, Bronwyn

Abstract

Industrial producers face the task of optimizing production process in an attempt to achieve the desired quality such as mechanical properties with the lowest energy consumption. In industrial carbon fiber production, the fibers are processed in bundles containing (batches) several thousand filaments and consequently the energy optimization will be a stochastic process as it involves uncertainty, imprecision or randomness. This paper presents a stochastic optimization model to reduce energy consumption a given range of desired mechanical properties. Several processing condition sets are developed and for each set of conditions, 50 samples of fiber are analyzed for their tensile strength and modulus. The energy consumption during production of the samples is carefully monitored on the processing equipment. Then, five standard distribution functions are examined to determine those which can best describe the distribution of mechanical properties of filaments. To verify the distribution goodness of fit and correlation statistics, the Kolmogorov–Smirnov test is used. In order to estimate the selected distribution (Weibull) parameters, the maximum likelihood, least square and genetic algorithm methods are compared. An array of factors including the sample size, the confidence level, and relative error of estimated parameters are used for evaluating the tensile strength and modulus properties.

Suggested Citation

  • Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:643-655
    DOI: 10.1016/j.apenergy.2015.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    2. Dimitris Fouskakis & David Draper, 2002. "Stochastic Optimization: a Review," International Statistical Review, International Statistical Institute, vol. 70(3), pages 315-349, December.
    3. Kitapbayev, Yerkin & Moriarty, John & Mancarella, Pierluigi, 2015. "Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems," Applied Energy, Elsevier, vol. 137(C), pages 823-831.
    4. Voyant, Cyril & Darras, Christophe & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure & Poggi, Philippe, 2014. "Bayesian rules and stochastic models for high accuracy prediction of solar radiation," Applied Energy, Elsevier, vol. 114(C), pages 218-226.
    5. Salazar, Juan M. & Diwekar, Urmila & Constantinescu, Emil & Zavala, Victor M., 2013. "Stochastic optimization approach to water management in cooling-constrained power plants," Applied Energy, Elsevier, vol. 112(C), pages 12-22.
    6. Hensher, David A. & Shore, Nina & Train, Kenneth, 2014. "Willingness to pay for residential electricity supply quality and reliability," Applied Energy, Elsevier, vol. 115(C), pages 280-292.
    7. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    8. Beatrice, Carlo & Napolitano, Pierpaolo & Guido, Chiara, 2014. "Injection parameter optimization by DoE of a light-duty diesel engine fed by Bio-ethanol/RME/diesel blend," Applied Energy, Elsevier, vol. 113(C), pages 373-384.
    9. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    10. Alaefour, Ibrahim & Karimi, G. & Jiao, Kui & Li, X., 2012. "Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study," Applied Energy, Elsevier, vol. 93(C), pages 80-89.
    11. Khayyam, Hamid & Bab-Hadiashar, Alireza, 2014. "Adaptive intelligent energy management system of plug-in hybrid electric vehicle," Energy, Elsevier, vol. 69(C), pages 319-335.
    12. Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
    13. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    2. Khayyam, Hamid & Naebe, Minoo & Milani, Abbas S. & Fakhrhoseini, Seyed Mousa & Date, Abhijit & Shabani, Bahman & Atkiss, Steve & Ramakrishna, Seeram & Fox, Bronwyn & Jazar, Reza N., 2021. "Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning," Energy, Elsevier, vol. 225(C).
    3. Srinivas Nunna & Maxime Maghe & Seyed Mousa Fakhrhoseini & Bhargav Polisetti & Minoo Naebe, 2018. "A Pathway to Reduce Energy Consumption in the Thermal Stabilization Process of Carbon Fiber Production," Energies, MDPI, vol. 11(5), pages 1-10, May.
    4. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    5. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    2. Ku, Donggyun & Choi, Minje & Yoo, Nakyoung & Shin, Seungheon & Lee, Seungjae, 2021. "A new algorithm for eco-friendly path guidance focused on electric vehicles," Energy, Elsevier, vol. 233(C).
    3. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    4. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    5. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    6. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    7. Díaz, Guzmán & Planas, Estefanía & Andreu, Jon & Kortabarria, Iñigo, 2015. "Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty," Energy, Elsevier, vol. 88(C), pages 837-848.
    8. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    9. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    10. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    11. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    12. Tonglin Fu & Chen Wang, 2018. "A Hybrid Wind Speed Forecasting Method and Wind Energy Resource Analysis Based on a Swarm Intelligence Optimization Algorithm and an Artificial Intelligence Model," Sustainability, MDPI, vol. 10(11), pages 1-24, October.
    13. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    14. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    15. Moo-Sung Sohn & Jiwoong Choi & Hoseog Kang & In-Chan Choi, 2017. "Multiobjective Production Planning at LG Display," Interfaces, INFORMS, vol. 47(4), pages 279-291, August.
    16. Deutschmann, Joshua W. & Postepska, Agnieszka & Sarr, Leopold, 2021. "Measuring willingness to pay for reliable electricity: Evidence from Senegal," World Development, Elsevier, vol. 138(C).
    17. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    18. Alam, Majbaul & Bhattacharyya, Subhes, 2017. "Are the off-grid customers ready to pay for electricity from the decentralized renewable hybrid mini-grids? A study of willingness to pay in rural Bangladesh," Energy, Elsevier, vol. 139(C), pages 433-446.
    19. Phan, Duong & Bab-Hadiashar, Alireza & Lai, Chow Yin & Crawford, Bryn & Hoseinnezhad, Reza & Jazar, Reza N. & Khayyam, Hamid, 2020. "Intelligent energy management system for conventional autonomous vehicles," Energy, Elsevier, vol. 191(C).
    20. Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:643-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.