IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05508-x.html
   My bibliography  Save this article

Automatic MILP solver configuration by learning problem similarities

Author

Listed:
  • Abdelrahman Hosny

    (Brown University)

  • Sherief Reda

    (Brown University
    Brown University)

Abstract

A large number of real-world optimization problems can be formulated as Mixed Integer Linear Programs (MILP). MILP solvers expose numerous configuration parameters to control their internal algorithms. Solutions, and their associated costs or runtimes, are significantly affected by the choice of the configuration parameters, even when problem instances have the same number of decision variables and constraints. On one hand, using the default solver configuration leads to suboptimal solutions. On the other hand, searching and evaluating a large number of configurations for every problem instance is time-consuming and, in some cases, infeasible. In this study, we aim to predict configuration parameters for unseen problem instances that yield lower-cost solutions without the time overhead of searching-and-evaluating configurations at the solving time. Toward that goal, we first investigate the cost correlation of MILP problem instances that come from the same distribution when solved using different configurations. We show that instances that have similar costs using one solver configuration also have similar costs using another solver configuration in the same runtime environment. After that, we present a methodology based on Deep Metric Learning to learn MILP similarities that correlate with their final solutions’ costs. At inference time, given a new problem instance, it is first projected into the learned metric space using the trained model, and configuration parameters are instantly predicted using previously-explored configurations from the nearest neighbor instance in the learned embedding space. Empirical results on real-world problem benchmarks show that our method predicts configuration parameters that improve solutions’ costs by up to 38% compared to existing approaches.

Suggested Citation

  • Abdelrahman Hosny & Sherief Reda, 2024. "Automatic MILP solver configuration by learning problem similarities," Annals of Operations Research, Springer, vol. 339(1), pages 909-936, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05508-x
    DOI: 10.1007/s10479-023-05508-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05508-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05508-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    2. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    3. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    4. Farahmand, H. & Doorman, G.L., 2012. "Balancing market integration in the Northern European continent," Applied Energy, Elsevier, vol. 96(C), pages 316-326.
    5. Moo-Sung Sohn & Jiwoong Choi & Hoseog Kang & In-Chan Choi, 2017. "Multiobjective Production Planning at LG Display," Interfaces, INFORMS, vol. 47(4), pages 279-291, August.
    6. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    7. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    8. Weiner, Jake & Ernst, Andreas T. & Li, Xiaodong & Sun, Yuan & Deb, Kalyanmoy, 2021. "Solving the maximum edge disjoint path problem using a modified Lagrangian particle swarm optimisation hybrid," European Journal of Operational Research, Elsevier, vol. 293(3), pages 847-862.
    9. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    10. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    11. Marco Corazza & Giacomo di Tollo & Giovanni Fasano & Raffaele Pesenti, 2021. "A novel hybrid PSO-based metaheuristic for costly portfolio selection problems," Annals of Operations Research, Springer, vol. 304(1), pages 109-137, September.
    12. Speetzen, N. & Richter, P., 2021. "Dynamic aiming strategy for central receiver systems," Renewable Energy, Elsevier, vol. 180(C), pages 55-67.
    13. Grzegorz Bocewicz & Zbigniew Banaszak & Izabela Nielsen, 2019. "Multimodal processes prototyping subject to grid-like network and fuzzy operation time constraints," Annals of Operations Research, Springer, vol. 273(1), pages 561-585, February.
    14. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    15. Alix Vargas & Carmen Fuster & David Corne, 2020. "Towards Sustainable Collaborative Logistics Using Specialist Planning Algorithms and a Gain-Sharing Business Model: A UK Case Study," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    16. Alexander E. I. Brownlee & Michael G. Epitropakis & Jeroen Mulder & Marc Paelinck & Edmund K. Burke, 2022. "A systematic approach to parameter optimization and its application to flight schedule simulation software," Journal of Heuristics, Springer, vol. 28(4), pages 509-538, August.
    17. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
    18. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    19. Eng, KaiLun & Muhammed, Abdullah & Mohamed, Mohamad Afendee & Hasan, Sazlinah, 2020. "A hybrid heuristic of Variable Neighbourhood Descent and Great Deluge algorithm for efficient task scheduling in Grid computing," European Journal of Operational Research, Elsevier, vol. 284(1), pages 75-86.
    20. Patrick Gerhards, 2020. "The multi-mode resource investment problem: a benchmark library and a computational study of lower and upper bounds," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 901-933, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05508-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.