IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1503-d1033933.html
   My bibliography  Save this article

Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas

Author

Listed:
  • Muhammed A. Hassan

    (Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
    Laboratoire de Thermique, Energétique et Procédés (LaTEP), E2S UPPA, Université de Pau et des Pays de l’Adour (UPPA), 64000 Pau, France)

  • Hindawi Salem

    (Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Nadjem Bailek

    (Sustainable Development and Computer Science Laboratory, Faculty of Sciences and Technology, Ahmed Draia University of Adrar, Adrar 01000, Algeria
    Energies and Materials Research Laboratory, Faculty of Sciences and Technology, University of Tamanghasset, Tamanghasset 11001, Algeria
    Engineering and Architectures Faculty, Nisantasi University, Istanbul 34481742, Turkey)

  • Ozgur Kisi

    (Department of Civil Engineering, Technical University of Lübeck, 23562 Lübeck, Germany
    Department of Civil Engineering, Ilia State University, 0162 Tbilisi, Georgia)

Abstract

The transportation sector is one of the primary sources of air pollutants in megacities. Strict regulations of newly added vehicles to the local market require precise prediction models of their fuel consumption (FC) and emission rates (ERs). Simple empirical and complex analytical models are widely used in the literature, but they are limited due to their low prediction accuracy and high computational costs. The public literature shows a significant lack of machine learning applications related to onboard vehicular emissions under real-world driving conditions due to the immense costs of required measurements, especially in developing countries. This work introduces random forest (RF) ensemble models, for the urban areas of Greater Cairo, a metropolitan city in Egypt, based on large datasets of precise measurements using 87 representative passenger cars and 10 typical driving routes. Five RF models are developed for predicting FC, as well as CO 2 , CO, NOx, and hydrocarbon (HC) ERs. The results demonstrate the reliability of RF models in predicting the first four variables, with up to 97% of the data variance being explained. Only the HC model is found less reliable due to the diversity of considered vehicle models. The relative influences of different model inputs are demonstrated. The FC is the most influential input (relative importance of >23%) for CO 2 , CO, and NOx predictions, followed by the engine speed and the vehicle category. Finally, it is demonstrated that the prediction accuracy of all models can be further improved by up to 97.8% by limiting the training dataset to a single-vehicle category.

Suggested Citation

  • Muhammed A. Hassan & Hindawi Salem & Nadjem Bailek & Ozgur Kisi, 2023. "Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1503-:d:1033933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maindonald, John, 2009. "Modern Multivariate Statistical Techniques: Regression, Classification and Manifold Learning," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(b11).
    2. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    3. Rahimi molkdaragh, R. & Jafarmadar, S. & Khalilaria, Sh & Soukht Saraee, H., 2018. "Prediction of the performance and exhaust emissions of a compression ignition engine using a wavelet neural network with a stochastic gradient algorithm," Energy, Elsevier, vol. 142(C), pages 1128-1138.
    4. Bishop, Justin D.K. & Molden, N. & Boies, Adam M, 2019. "Using portable emissions measurement systems (PEMS) to derive more accurate estimates of fuel use and nitrogen oxides emissions from modern Euro 6 passenger cars under real-world driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 942-973.
    5. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    6. Mera, Zamir & Fonseca, Natalia & López, José-María & Casanova, Jesús, 2019. "Analysis of the high instantaneous NOx emissions from Euro 6 diesel passenger cars under real driving conditions," Applied Energy, Elsevier, vol. 242(C), pages 1074-1089.
    7. Omer Saud Azeez & Biswajeet Pradhan & Helmi Z. M. Shafri, 2018. "Vehicular CO Emission Prediction Using Support Vector Regression Model and GIS," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    8. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    9. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    10. Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
    11. Jian Gong & Junzhu Shang & Lei Li & Changjian Zhang & Jie He & Jinhang Ma, 2021. "A Comparative Study on Fuel Consumption Prediction Methods of Heavy-Duty Diesel Trucks Considering 21 Influencing Factors," Energies, MDPI, vol. 14(23), pages 1-18, December.
    12. Hassan, Muhammed A. & Khalil, Adel & Abubakr, Mohamed, 2021. "Selection methodology of representative meteorological days for assessment of renewable energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 34-51.
    13. Ning Yang & Lei Yang & Feng Xu & Xue Han & Bin Liu & Naiyuan Zheng & Yuan Li & Yu Bai & Liwei Li & Jiguang Wang, 2022. "Vehicle Emission Changes in China under Different Control Measures over Past Two Decades," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    14. Amanuel Gebisa & Girma Gebresenbet & Rajendiran Gopal & Ramesh Babu Nallamothu, 2022. "A Neural Network and Principal Component Analysis Approach to Develop a Real-Time Driving Cycle in an Urban Environment: The Case of Addis Ababa, Ethiopia," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    15. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Potential of four different machine-learning algorithms in modeling daily global solar radiation," Renewable Energy, Elsevier, vol. 111(C), pages 52-62.
    16. Domínguez-Sáez, Aida & Rattá, Giuseppe A. & Barrios, Carmen C., 2018. "Prediction of exhaust emission in transient conditions of a diesel engine fueled with animal fat using Artificial Neural Network and Symbolic Regression," Energy, Elsevier, vol. 149(C), pages 675-683.
    17. Ehsan Moradi & Luis Miranda-Moreno, 2022. "A Mixed Ensemble Learning and Time-Series Methodology for Category-Specific Vehicular Energy and Emissions Modeling," Sustainability, MDPI, vol. 14(3), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dengfeng Zhao & Haiyang Li & Junjian Hou & Pengliang Gong & Yudong Zhong & Wenbin He & Zhijun Fu, 2023. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    2. Dengfeng Zhao & Haiyang Li & Junjian Hou & Pengliang Gong & Yudong Zhong & Wenbin He & Zhijun Fu, 2023. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption," Energies, MDPI, vol. 16(14), pages 1-20, July.
    3. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    4. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    5. Hassan, Muhammed A. & Abubakr, Mohamed & Khalil, Adel, 2021. "A profile-free non-parametric approach towards generation of synthetic hourly global solar irradiation data from daily totals," Renewable Energy, Elsevier, vol. 167(C), pages 613-628.
    6. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
    7. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    8. Kaood, Amr & Abubakr, Mohamed & Al-Oran, Otabeh & Hassan, Muhammed A., 2021. "Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators," Renewable Energy, Elsevier, vol. 177(C), pages 1045-1062.
    9. Bailek, Nadjem & Bouchouicha, Kada & Hassan, Muhammed A. & Slimani, Abdeldjalil & Jamil, Basharat, 2020. "Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria," Renewable Energy, Elsevier, vol. 156(C), pages 57-67.
    10. Wojcieszyk, Michał & Kroyan, Yuri & Kaario, Ossi & Larmi, Martti, 2023. "Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics," Energy, Elsevier, vol. 285(C).
    11. Bouchouicha, Kada & Hassan, Muhammed A. & Bailek, Nadjem & Aoun, Nouar, 2019. "Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate," Renewable Energy, Elsevier, vol. 139(C), pages 844-858.
    12. Hassan, Muhammed A. & Al-Ghussain, Loiy & Khalil, Adel & Kaseb, Sayed A., 2022. "Self-calibrated hybrid weather forecasters for solar thermal and photovoltaic power plants," Renewable Energy, Elsevier, vol. 188(C), pages 1120-1140.
    13. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
    14. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    15. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    16. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    17. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).
    18. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    19. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    20. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1503-:d:1033933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.