IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i2p79-d1587981.html
   My bibliography  Save this article

Intelligence-Based Strategies with Vehicle-to-Everything Network: A Review

Author

Listed:
  • Navdeep Bohra

    (Department of CSE/IT, Maharaja Surajmal Institute of Technology, New Delhi 110058, India)

  • Ashish Kumari

    (Department of CSE/IT, Maharaja Surajmal Institute of Technology, New Delhi 110058, India)

  • Vikash Kumar Mishra

    (Department of Electrical Engineering, University of Cape Town, Rondebosch 7700, South Africa)

  • Pramod Kumar Soni

    (Department of Computer Applications, Manipal University Jaipur, Jaipur 302007, India)

  • Vipin Balyan

    (Department of Electrical, Electronics, and Computer Engineering, Cape Peninsula University of Technology, Cape Town 8000, South Africa)

Abstract

Advancements in intelligent vehicular networks and computing systems have created new possibilities for innovative approaches that enhance traffic safety, comfort, and transportation performance. Machine Learning (ML) has become widely employed for boosting conventional data-driven methodologies in various scientific study domains. The integration of a Vehicle-to-Everything (V2X) system with ML enables the acquisition of knowledge from multiple places, enhances the operator’s awareness, and predicts future crashes to prevent them. The information serves multiple functions, such as determining the most efficient route, increasing the driver’s knowledge, forecasting movement strategy to avoid risky circumstances, and eventually improving user convenience, security, and overall highway experiences. This article thoroughly examines Artificial Intelligence (AI) and ML methods that are now investigated through different study endeavors in vehicular ad hoc networks (VANETs). Furthermore, it examines the benefits and drawbacks accompanying such intelligent methods in the context of the VANETs system and simulation tools. Ultimately, this study pinpoints prospective domains for vehicular network development that can utilize the capabilities of AI and ML.

Suggested Citation

  • Navdeep Bohra & Ashish Kumari & Vikash Kumar Mishra & Pramod Kumar Soni & Vipin Balyan, 2025. "Intelligence-Based Strategies with Vehicle-to-Everything Network: A Review," Future Internet, MDPI, vol. 17(2), pages 1-40, February.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:2:p:79-:d:1587981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/2/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/2/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farhan Aadil & Khalid Bashir Bajwa & Salabat Khan & Nadeem Majeed Chaudary & Adeel Akram, 2016. "CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.
    2. Matteo Mazziotta & Adriano Pareto, 2019. "Use and Misuse of PCA for Measuring Well-Being," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 451-476, April.
    3. Margaretha Gansterer & Richard F. Hartl, 2020. "Rejoinder on: Shared resources in collaborative vehicle routing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 32-33, April.
    4. Muhammed A. Hassan & Hindawi Salem & Nadjem Bailek & Ozgur Kisi, 2023. "Random Forest Ensemble-Based Predictions of On-Road Vehicular Emissions and Fuel Consumption in Developing Urban Areas," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    5. Margaretha Gansterer & Richard F. Hartl, 2020. "Shared resources in collaborative vehicle routing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancini, Simona & Gansterer, Margaretha & Hartl, Richard F., 2021. "The collaborative consistent vehicle routing problem with workload balance," European Journal of Operational Research, Elsevier, vol. 293(3), pages 955-965.
    2. Lehner, Roland, 2023. "Cross-Supply Chain Collaboration Platform for Pallet Management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 138753, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Csilla Bartucz & László Buics & Edit Süle, 2023. "Lack of Collaboration on the CEP Market and the Underlying Reasons—A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    4. Margaretha Gansterer & Richard F. Hartl, 2021. "The Prisoners’ Dilemma in collaborative carriers’ request selection," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 73-87, March.
    5. Zahra Sadat Hasanpour Jesri & Kourosh Eshghi & Majid Rafiee & Tom Van Woensel, 2022. "The Multi-Depot Traveling Purchaser Problem with Shared Resources," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    6. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    7. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2023. "The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Ismail Aydemir & Fraser McLeod & Matt Grote & Tom Cherrett, 2023. "Evaluating the Feasibility of a Shared-Fleet Operation in Healthcare Logistics between Public Organisations," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    9. Zhang, Qihuan & Wang, Ziteng & Huang, Min & Yu, Yang & Fang, Shu-Cherng, 2022. "Heterogeneous multi-depot collaborative vehicle routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 1-20.
    10. Thomas Hacardiaux & Jean-Sébastien Tancrez, 2022. "Assessing the benefits of horizontal cooperation for the various stages of the supply chain," Operational Research, Springer, vol. 22(4), pages 3901-3924, September.
    11. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2022. "Reprint of: The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 250(C).
    12. Abdessalem Jerbi & Haifa Jribi & Awad M. Aljuaid & Wafik Hachicha & Faouzi Masmoudi, 2022. "Design of Supply Chain Transportation Pooling Strategy for Reducing CO 2 Emissions Using a Simulation-Based Methodology: A Case Study," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. Arroyo, Federico, 2024. "Cost Allocation in Vehicle Routing Problems with Time Windows," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(1), pages 1241-1268.
    14. Ghassan Husnain & Shahzad Anwar & Gulbadan Sikander & Armughan Ali & Sangsoon Lim, 2023. "A Bio-Inspired Cluster Optimization Schema for Efficient Routing in Vehicular Ad Hoc Networks (VANETs)," Energies, MDPI, vol. 16(3), pages 1-20, February.
    15. Mariateresa Ciommi & Chiara Gigliarano & Francesco M. Chelli & Mauro Gallegati, 2022. "It is the Total that Does [Not] Make the Sum: Nature, Economy and Society in the Equitable and Sustainable Well-Being of the Italian Provinces," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 491-522, June.
    16. Rajko Tomaš, 2022. "Measurement of the Concentration of Potential Quality of Life in Local Communities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 163(1), pages 79-109, August.
    17. Stefanía D’Iorio & Liliana Forzani & Rodrigo García Arancibia & Ignacio Girela, 2023. "Predictive Power of Composite Socioeconomic Indices in Regression and Classification: Principal Components and Partial Least Squares," Working Papers 246, Red Nacional de Investigadores en Economía (RedNIE).
    18. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    19. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    20. Alexey A. Mironenkov & Alexey N. Kurbatskii & Marina V. Mironenkova, 2024. "The Quality-of-Life Measurement with a Stochastic Choice of Parameters of the Weighted Principal Component," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 82-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:2:p:79-:d:1587981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.