IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1045-1062.html
   My bibliography  Save this article

Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators

Author

Listed:
  • Kaood, Amr
  • Abubakr, Mohamed
  • Al-Oran, Otabeh
  • Hassan, Muhammed A.

Abstract

Molten salts are typically used as energy storage media in concentrating solar power systems for their lower costs and environmental impact. This study aims to map and optimize the performance of parabolic trough concentrators (PTCs) working with molten salt-based nanofluids (MSNFs) as heat transfer media at high temperatures. The thermal, hydraulic, energetic, and exergetic performances were analyzed and optimized using a unique framework of Monte Carlo optical simulations, computational fluid dynamics, data-drive support vector regression, particle swarm optimization, and decision-making techniques. Three molten salts (Solar Salt, Hitec, and Hitec XL) and three nanoparticle types (Al2O3, CuO, and SiO2) were investigated in a broad range of volumetric concentrations (0.0–4.0%), operating Reynolds numbers (4 × 103 to 40 × 103), and temperatures (535–805 K). The results showed a maximum energy efficiency of 69.1%, achieved when using SiO2-Hitec nanofluid (1.0%) at a Reynolds number of 40 × 104 and temperature of 535 K. The maximum achieved exergy efficiency was 70.48%, obtained using pure Hitec at a Reynolds number of 40 × 104 and temperature of 535 K. The maximum possible enhancements in energy and exergy efficiencies in the covered range are 17.0 and 42.0%, respectively. The optimal combination of energy and exergy efficiencies are ∼73.1 and 69.0%, obtained using CuO-Hitec nanofluid at temperature, Reynolds number, and concentration of 535 K, 39912.98, and 0.019%, respectively. The optimum combination of percentage enhancements in energy and exergy efficiencies are 0.465 and 7.182%, respectively, which corresponds to CuO-Hitec nanofluid operating at 805 K, 32025.4, and 0.092%, respectively.

Suggested Citation

  • Kaood, Amr & Abubakr, Mohamed & Al-Oran, Otabeh & Hassan, Muhammed A., 2021. "Performance analysis and particle swarm optimization of molten salt-based nanofluids in parabolic trough concentrators," Renewable Energy, Elsevier, vol. 177(C), pages 1045-1062.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1045-1062
    DOI: 10.1016/j.renene.2021.06.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muñoz-Sánchez, Belén & Nieto-Maestre, Javier & Iparraguirre-Torres, Iñigo & García-Romero, Ana & Sala-Lizarraga, Jose M., 2018. "Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3924-3945.
    2. Chang, Chun & Sciacovelli, Adriano & Wu, Zhiyong & Li, Xin & Li, Yongliang & Zhao, Mingzhi & Deng, Jie & Wang, Zhifeng & Ding, Yulong, 2018. "Enhanced heat transfer in a parabolic trough solar receiver by inserting rods and using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 220(C), pages 337-350.
    3. Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
    4. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2018. "Heat transfer enhancement in parabolic trough collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 198-218.
    5. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    6. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    7. Arthur, Owen & Karim, M.A., 2016. "An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 739-755.
    8. Khanafer, Khalil & Vafai, Kambiz, 2018. "A review on the applications of nanofluids in solar energy field," Renewable Energy, Elsevier, vol. 123(C), pages 398-406.
    9. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    10. Roldán, M.I. & Valenzuela, L. & Zarza, E., 2013. "Thermal analysis of solar receiver pipes with superheated steam," Applied Energy, Elsevier, vol. 103(C), pages 73-84.
    11. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    12. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Potential of four different machine-learning algorithms in modeling daily global solar radiation," Renewable Energy, Elsevier, vol. 111(C), pages 52-62.
    13. Subramani, J. & Nagarajan, P.K. & Mahian, Omid & Sathyamurthy, Ravishankar, 2018. "Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime," Renewable Energy, Elsevier, vol. 119(C), pages 19-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan, Muhammed A. & Al-Ghussain, Loiy & Khalil, Adel & Kaseb, Sayed A., 2022. "Self-calibrated hybrid weather forecasters for solar thermal and photovoltaic power plants," Renewable Energy, Elsevier, vol. 188(C), pages 1120-1140.
    2. Alawi, Omer A. & Kamar, Haslinda Mohamed & Homod, Raad Z. & Yaseen, Zaher Mundher, 2024. "Incorporating artificial intelligence-powered prediction models for exergy efficiency evaluation in parabolic trough collectors," Renewable Energy, Elsevier, vol. 225(C).
    3. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    4. Kaood, Amr & Ismail, Omar A. & Al-Tohamy, Amro H., 2024. "Hydrothermal performance assessment of a parabolic trough with proposed conical solar receiver," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    2. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    3. Hassan, Muhammed A. & Abubakr, Mohamed & Khalil, Adel, 2021. "A profile-free non-parametric approach towards generation of synthetic hourly global solar irradiation data from daily totals," Renewable Energy, Elsevier, vol. 167(C), pages 613-628.
    4. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    5. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    6. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    7. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Hassan, Muhammed A. & Al-Ghussain, Loiy & Ahmad, Adnan Darwish & Abubaker, Ahmad M. & Khalil, Adel, 2022. "Aggregated independent forecasters of half-hourly global horizontal irradiance," Renewable Energy, Elsevier, vol. 181(C), pages 365-383.
    9. Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
    10. Hassan, Muhammed A. & Akoush, Bassem M. & Abubakr, Mohamed & Campana, Pietro Elia & Khalil, Adel, 2021. "High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions," Renewable Energy, Elsevier, vol. 169(C), pages 641-659.
    11. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    12. Peng, Hao & Guo, Wenhua & Li, Meilin, 2020. "Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube," Energy, Elsevier, vol. 192(C).
    13. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    14. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    16. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Wang, Yuqi & Wu, Shuang & Bai, Jingru & Sheng, Hongyu & Zhang, Jinghui, 2024. "Al2O3 nanoparticles integration for comprehensive enhancement of eutectic salt thermal performance: Experimental design, molecular dynamics calculations, and system simulation studies," Energy, Elsevier, vol. 292(C).
    17. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    18. Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).
    19. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    20. Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1045-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.